Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superatomic Nickel core and unusual molecular reactivity

27.02.2015

Scientists in Russian Academy of Sciences, Moscow have revealed a unique molecular fragment Ni2O2, consisting of two nickel atoms and two oxygen atoms, that have shown plausible superatomic properties. Supeatoms are important structural elements in nanoscale organization and they possess unique physical and chemical properties.

Superatom is a combination of two or more atoms that form a stable structural fragment and possess unique physical and chemical properties. Systems, that contain superatoms, open a number of amazing possibilities for not only formation of new materials, but also for revealing unusual chemical reactivity.


Artistic image of Ni2(acac)3+ particle flying in the chamber of mass spectrometer.

Copyright : Ananikov Laboratory (AnanikovLab.ru)

Throughout the chemical transformations process, superatom acts as a single unit and is left unchanged during the reaction. As a result, it would be logical to consider superatoms as elements of periodic table in nanoscale world. Potential area of application of superatoms is quite broad – currently many research directions are explored worldwide in catalysis, material sciences, organometallic chemistry, and medical research.

Modern computations provide a possibility to predict structures that may recognize a "superatom" and even describe some of its properties. However, as far as experiment is concerned, there are currently no universal analytic tools to detect superatoms within complex molecular frameworks.

Indeed, development of advanced experimental approaches to detect superatoms is a key question for future research. The unusual composition of superatoms - the number of atoms involved (often mentioned as "magic" number) - greatly facilitates experimental observations. Higher relative stability is another characteristic feature that helps to detect superatoms and separate them from other molecules.

Scientists of Zelinsky Institute have suggested mass spectrometry as a suitable tool to study superatoms. In the course of the experiment, investigated solution was fed into the ionization chamber of the mass spectrometer through a thin capillary via syringe pump. The solution was further converted into a spray, and compounds were ionized under high voltage and became individually charged particles (Figure 1).

The technique is based on a well-known process that is called electrospray ionization (ESI). Correspondingly, such conditions may induce the formation of particles containing superatomic cores, which are further identified in a collision with nitrogen molecules in the second part of the apparatus. By varying the parameters of the collision, it is possible to estimate the relative stability and to identify the most stable ions.

Extraordinary properties were revealed in the electrospray ionization mass spectrometry experiment, carried out for the solution of simple and well-known nickel salt, namely - nickel(II) acetylacetonate. After a detailed analysis of the obtained spectra, the authors found a surprisingly stable ion Ni2(acac)3+, which contained the Ni2O2 core. During the bombardment of ions by nitrogen molecules (ESI-MS/MS experiment), it was possible to establish a series of relative stability, based on the number of nickel atoms that make up the ion: Ni2 >> Ni3 ≈ Ni1. In a series of experiments an interesting trend of exceptional stability of bimetallic complex compared to mono- and trimetallic complexes was observed.

Unusual chemical processes were revealed upon examination of the metal complex with Ni2O2 core that contains two atoms of nickel and three residues of acetylacetonate. In spite of diverse reactivity and several fragmentation pathways, the principal Ni2O2 core remained unchanged. From the chemical point of view, most important features were found in the reactions occurring as a result of C-C, C-H and C-O bond activation – the key processes in terms of possible applications in organic chemistry and catalysis.

One of the priority targets of modern catalysis is a modification of the organic fragments (coordinated as ligands) that does not affect the active site of the catalyst. Numerous studies have shown that it is not a simple task, because carbon-carbon, carbon-oxygen and carbon-hydrogen bonds in organic fragments are usually stronger (and more difficult to break) compared to the weak donor-acceptor bonds in the coordination complexes.

Formation of superatomic core in such systems gives a chance to totally change established opinions on what organometallic complexes are and how the reactivity can be tuned. New reactivity patterns would allow scientists to exploit new properties of well-known compounds and to solve chemical problems that previously seemed extraordinary.

Results of this study are important in order to understand fundamental principles of superatoms’ chemistry and to develop new catalytic systems for fine organic synthesis. As Prof. Ananikov mentioned: "Nickel complexes are very cheap and easily available. Surprisingly, some nickel complexes have shown superior properties to already known, much more expansive catalysts. We can expect more and more powerful catalytic applications of nickel complexes in the nearest future".

The first part of this study: "Exceptional Behavior of Ni2O2 Species Revealed by ESI-MS and MS/ MS Studies in Solution. Application of Superatomic Core to Facilitate New Chemical Transformations", by Dmitry B. Eremin and Valentine P. Ananikov has been published in Organometallics (American Chemical Society).

Reference: Organometallics, DOI: 10.1021/om500637k
http://pubs.acs.org/doi/abs/10.1021/om500637k


Associated links
http://AnanikovLab.ru

Ananikov Laboratory | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Research finds new molecular structures in boron-based nanoclusters
13.07.2018 | Brown University

nachricht 3D-Printing: Support structures to prevent vibrations in post-processing of thin-walled parts
12.07.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>