Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers pioneer new production method for heterostructure devices

22.06.2020

Researchers at the University of Exeter have developed a pioneering production method for heterostructure devices, based on 2D materials such as graphene.

The new study, published in Nature Communications, focuses on a production method, based around mechanical abrasion, where multilayer structures are formed through directly abrading different Van der Waals material powders directly on top of one another.


Researchers at the University of Exeter have developed a pioneering production method for heterostructure devices, based on 2D materials such as graphene.

Credit: Darren Nutting and Dr Freddie Withers/ University of Exeter

The new technique saw sharp heterointerfaces emerge for certain heterostructure combinations. The results pave the way for a wide range of heterointerface based devices to be opened up.

To demonstrate the applicability of this method, researchers demonstrated a multitude of different functional devices such as resistors, capacitors, transistors, diodes and photovoltaics.

The work also demonstrated the use of these films for energy applications such as in triboelectric nanogenerator devices and as a catalyst in the hydrogen evolution reaction.

Darren Nutting, from the University of Exeter and co-author of the study said: "The production method is really simple, you can go from bare substrate to functional heterostructure device within about 10 minutes.

"This is all without the need for complex growth conditions, 20 hours of ultra-sonication or messy liquid phase production.

"The method is applicable to any 2D material crystal, and can easily be automated to produce heterostructures of arbitrary size and complexity. This allows for the production of a plethora of device possibilities with superior performance to those created using more complex methods."

Dr Freddie Withers, also from the University of Exeter and lead author added: "The most interesting and surprising aspect of this work is that sharply defined heterointerfaces can be realised through direct abrasion, which we initially expected would lead to an intermixing of materials when directly abrading layer by layer. This observation allows for a large number of different devices to be realised through an extremely simple and low-cost fabrication process.

"We also found that the performance of our materials significantly outperform the performance of competitive scalable 2D materials production technologies. We think this is due to larger crystallite sizes and cleaner crystallite interfaces within our films. Considering the rudimentary development of the abrasive process thus far, it will be interesting to see how far we can push the performance levels."

Heterostructures formed through abraded van der Waals materials is published in Nature Communications.

Media Contact

Duncan Sandes
d.sandes@exeter.ac.uk
44-013-927-22391

 @uniofexeter

http://www.exeter.ac.uk 

Duncan Sandes | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41467-020-16717-4

More articles from Materials Sciences:

nachricht Thermophones offer new route to radically simplify array design, research shows
03.07.2020 | University of Exeter

nachricht The lightest electromagnetic shielding material in the world
02.07.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>