Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop nanoscale fibers that are thinner than the wavelengths of light they carry

18.12.2003


Researchers have developed a process to create wires only 50 nanometers (billionths of a meter) thick. Made from silica, the same mineral found in quartz, the wires carry light in an unusual way. Because the wires are thinner than the wavelengths of light they transport, the material serves as a guide around which light waves flow. In addition, because the researchers can fabricate the wires with a uniform diameter and smooth surfaces down to the atomic level, the light waves remain coherent as they travel.



The smaller fibers will allow devices to transmit more information while using less space. The new material may have applications in ever-shrinking medical products and tiny photonics equipment such as nanoscale laser systems, tools for communications and sensors. Size is of critical importance to sensing--with more, smaller-diameter fibers packed into the same area, sensors could detect many toxins, for example, at once and with greater precision and accuracy.

Researchers at Harvard University led by Eric Mazur and Limin Tong (also of Zhejiang University in China), along with colleagues from Tohoku University in Japan, report their findings in the Dec. 18, 2003, issue of the journal Nature.


The National Science Foundation (NSF), a pioneer among federal agencies in fostering the development of nanoscale science, engineering and technology, supports Mazur’s work. In FY 2004, NSF requested an expansion over earlier investments in critical fields including nanobiotechnology, manufacturing at the nanoscale, instrumentation and education. These efforts will enable development of revolutionary technologies that contribute to improvements in health, advance agriculture, conserve materials and energy and sustain the environment. The research will help to establish the infrastructure and workforce needed to exploit the opportunities presented by nanoscale science and engineering.

NSF comments regarding the research discovery and the Mazur group:

"Dr. Mazur’s group at Harvard has made significant contributions to the fields of optics and short-pulse laser micromachining," says Julie Chen, program director in NSF’s Nanomanufacturing program. "This new method of manufacturing subwavelength-diameter silica wires, in concert with the research group’s ongoing efforts in micromachining, may lead to a further reduction of the size of optical and photonic devices."

"Dr. Mazur is involved in exciting, broader applications for short-pulse laser research, including microsurgery, such as laser eye surgery and dermatology, and studies of neurons in microscopic nematodes," says Julie Chen, program director in NSF’s Nanomanufacturing program.

"Dr. Mazur is also extensively involved in education and outreach activities, with several high school and undergraduate students conducting research and many other middle school and high school students participating in laboratory visits," says Julie Chen, program director in NSF’s Nanomanufacturing program.

"The multidisciplinary nature of the Mazur group’s work offers an excellent training vehicle to move into other areas of research," says Denise Caldwell, one of the officers who monitors Mazur’s awards. "One researcher I met at a Physics Frontiers center was able to successfully transition from plasma physics graduate research in Mazur’s lab to a post-doctoral project on experimental neuroscience," she adds. Caldwell is a program director in NSF’s Physics Frontiers program.

"He has been a national leader in developing techniques for using interactive teaching in large physics lecture courses and in developing tools to measure student learning in physics," says Duncan McBride, Program Director in NSF’s Education and Human Resources Directorate. Dr. Mazur’s work integrates research and education, and in 2001 he received the NSF Director’s award for Distinguished Teaching Scholars.

Comment from Mazur regarding outreach:

"I have always been of the opinion that doing good science requires being a good educator," says Mazur. "What good is a scientific breakthrough if one cannot convince the public, let alone another scientist of its value?"

Josh Chamot | NSF
Further information:
http://mazur-www.harvard.edu
http://www.fastlane.nsf.gov/servlet/showaward?award=0117795
http://www.nsf.gov

More articles from Materials Sciences:

nachricht OrganoPor: Bio-Based Boards for A Thermal Insulation Composite System
21.02.2020 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Freiburg researcher investigate the origins of surface texture
17.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>