Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanometer-thick clay may yield groundbreaking technology

16.04.2003


An ultrathin film containing 1-nanometer thick clay particles has been created for the first time, an accomplishment that may yield new materials and devices for medicine, electronics and engineering, according to Purdue University and Belgian scientists.


Cliff Johnston uses a laser to look at a clay particle in his Purdue University lab. The laser helps Johnston study the structure and orientation of the clay. This particular layer is approximately 1 million times the thickness of the one nanometer-thick layer researchers recently developed. (Purdue Agricultural Communications photo/Tom Campbell)


Cliff Johnston peers through a model of a 1 nanometer-thick layer of clay at his Purdue University laboratory. It would take 70,000 of the clay layers to equal the thickness of one human hair. Using these ultrathin films, researchers hope to develop new materials that will benefit medicine, electronics and engineering. Johnston, an environmental chemist in the agronomy department, also is a researcher in Purdue’s Birck Nanotechnology Center. (Agricultural Communications photo/Tom Campbell – model courtesy of Darrell Schulze)



Using a method that captures clay particles on a crystal, Purdue and Katholieke Universiteit Leuven research partners were able to produce, see and manipulate a single layer of clay. It would take 70,000 of these layers to equal the thickness of a human hair. The thickness of one clay particle is about 1 nanometer, and being able to see one of these layers is equivalent to standing on Earth and being able to see footprints on the moon.

The researchers’ joint findings will be reported in the May 27 issue of the journal Langmuir, a publication of the American Chemical Society. The report is currently on the publication’s Web site .


"Once you can control and manipulate nano-sized clay particles, then you have the ability to create smart materials by combining the structural support provided by the clay with the functionality of organic molecules, such as dye, enzymes, proteins and polymers," said Cliff Johnston, Purdue professor of agronomy and an environmental chemist. "That allows us to build the clay and the organic molecules into more complex structures."

This could lead to development of sensors to more quickly detect biological and chemical agents, the creation of stronger plastics and other materials, such as self-sealing substances for use on spacecraft.

"When we use an ultrathin hybrid film to make a device, such as a sensor, it will respond faster than a larger device," said Johnston, who also is a researcher with the Birck Nanotechnology Center in Purdue’s Discovery Park.

Clay minerals already have a variety of uses in products such as nanocomposites, vaccines, catalysts and plastics. In these materials, the clay particles consist of many layers.

Creating a film that has a single layer of clay allows researchers to work with the mineral in new ways. Because clay behaves differently when it’s in bulk form composed of numerous layers, its value multiplies in a single-layer form, Johnston said.

"We’re interested in making clay particles smart materials by combining them with functional organic molecules to form hybrid materials," he said. "By doing this, we open a whole spectrum of materials we can develop so they will respond in a particular way in a particular environment.

"It could be a dye molecule that is one color in the presence of a particular contaminant or is sensitive to a change in pH or to a whole range of different things."

Clay particles can provide a semirigid structure or template for organic molecules, Johnston said. By combining other materials, scientists can develop new hybrid materials that are malleable and respond in a particular way.

For instance, clay minerals are currently used to create plastics that are significantly lighter, stronger and more elastic than those without clay. In these materials, the clay minerals are present in multiple layers, Johnston said. This adds stability to the plastic; it melts at a higher temperature; it’s stronger. However, there is limited control over how bulk, multilayer clay and another substance mix.

"Mixing bulk forms of clay is not the same as working with an individual layer, which allows you to manipulate it and to place it where you want it," he said.

In order to produce, directly see and work with a single layer of clay, Johnston and Katholieke Universiteit Leuven colleagues started with a technique called a Langmuir-Blodgett Balance. This involved putting clay particles into water and then adding insoluble organic molecules that have a positively charged tip. As the organic molecules float on the water surface, they attract and bind to the negatively charged clay.

The researchers used a Langmuir trough to force these combined particles into a line. This is akin to ping-pong balls floating in a pool of water and then compressing the water so all the balls are together, Johnston said. Next the scientists inserted a crystal into the water that would attract floating molecules. When the crystal was pulled out of the water, the molecules coated its surface, forming a film.

In order to detect the single layer of clay film, the scientists used infrared techniques, effective because clays absorb infrared light. They then used an atomic force microscope to see the hybrid film.

The investigators plan to continue their research by exploring different ways of making the hybrid films and the types of functionality that can be added or built into the films.

The study’s lead author is Robin Ras, a Katholieke Universiteit (K.U.) Leuven doctoral student in the Center for Surface Chemistry and Catalysis. The other authors are Robert Schoonheydt, K.U. Agricultural and Applied Biological Sciences Department dean and director of the Center for Surface Chemistry and Catalysis; Elias Franses, Purdue professor of chemical engineering; and K.U. Leuven scientists R. Ramaekers, G. Maes, P. Foubert, and F. De Schryver.

The Fund for Scientific Research-Flanders, a bilateral agreement Flanders-Hungary grant and the U.S. Department of Agriculture National Research Initiative provided funding for this work. Johnston also received a K.U. Leuven Fellowship.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu

Source: Cliff Johnston, (765) 496-1716, clays@purdue.edu

Ag Communications: (765) 494-2722; Beth Forbes, bforbes@aes.purdue.edu;

Susan A. Steeves | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/030415.Johnston.nanoclay.html
http://www.agriculture.purdue.edu/AgComm/public/agnews/
http://www.nano.gov/

More articles from Materials Sciences:

nachricht Tiny quantum sensors watch materials transform under pressure
13.12.2019 | DOE/Lawrence Berkeley National Laboratory

nachricht Light, strong, and tough: Researchers at the University of Bayreuth discover unique polymer fibres
13.12.2019 | Universität Bayreuth

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>