Peas and beans get by with more than a little help from friends

The relationship between leguminous plants such as peas and beans and nitrogen-fixing bacteria is even closer than previously thought, with bacteria acting like an intrinsic part of the plant, according to research published in the journal Nature today.

Researchers from the University of Reading and the John Innes Centre, Norwich, have found that nitrogen-fixing bacteria provide more than just a supply of useable nitrogen to the plants. They have found that amino acid cycling between the plant and the bacteria controls the fixation process, with the bacteria acting like an ‘organelle’ on which the plant is totally dependent.

“This evens things up in terms of the symbiotic relationship between plant and bacteria and also provides some reason for how the symbiotic relationship might have evolved,” explains Dr Philip Poole from the University of Reading who headed the research team. “We used to think that the bacteria fixed nitrogen in return for a supply of carbon and energy, but now we can see that the two are mutually dependent. Their complete dependency on each other helps explain how selective evolution might have driven the development of such an advantageous relationship.”

Plants cannot use nitrogen directly from the atmosphere, but rely on it being converted to a usable form, such as ammonium, in order to use it to make proteins and other essential molecules, including DNA. A type of bacteria, known as rhizobia, can “fix” nitrogen directly from the atmosphere. Rhizobia infect nodules on the roots of legumes – producing ammonia from atmospheric nitrogen that the plant can use. This symbiotic relationship between legumes and rhizobia accounts for around 65% of the global nitrogen that can be used by other plants (when the legume dies) or animals (when the legume is eaten).

The research team found that the cycling of amino-acids between the legume and rhizobia was the key driver of the nitrogen fixation process. When the cycle was blocked, nitrogen fixation stopped. Similarly in the absence of amino acid cycling, rhizobia use carbon very poorly and legumes are poor at assimilating nitrogen released from the bacteria.

Contact
Dr Philip Poole
University of Reading
+44 (0)118-9318895
p.s.poole@reading.ac.uk

Media Contact

Chloe Kembery alfa

Alle Nachrichten aus der Kategorie: Agricultural and Forestry Science

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Rotation of a molecule as an “internal clock”

Using a new method, physicists at the Heidelberg Max Planck Institute for Nuclear Physics have investigated the ultrafast fragmentation of hydrogen molecules in intense laser fields in detail. They used…

3D printing the first ever biomimetic tongue surface

Scientists have created synthetic soft surfaces with tongue-like textures for the first time using 3D printing, opening new possibilities for testing oral processing properties of food, nutritional technologies, pharmaceutics and…

How to figure out what you don’t know

Increasingly, biologists are turning to computational modeling to make sense of complex systems. In neuroscience, researchers are adapting the kinds of algorithms used to forecast the weather or filter spam…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close