Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017

Researchers from the Faculties of Chemistry and of Materials Science of Lomonosov Moscow State University have developed a new way of increasing the sensitivity of detecting volatile compounds, especially chlorine, using metallic nanoparticles. The work has been published in the Talanta journal.

Metallic nanoparticles, in particular the nanoparticles of gold and silver, are widely used in analytical chemistry. Amongst their uses is creating optical sensors based on the surface plasmonic resonance (the phenomenon of surface plasmon excitation by light) in colloidal solutions and on solid supports.


This is an image of TEM micrograph of aqueous solution of silver triangular nanoplates

Credit: Aleksei Furletov

Modern optical sensors have considerable advantages like high sensitivity, ease of detecting an analytic signal and adjustability of the optical and laboratory analysis parameters. Nevertheless, these devices have certain limitations when it comes to selectivity.

It happens because of aggregative instability of nanoparticles (the particles stick together when collide) which starts to happen during high ionic strength (high intensity of the electric field created by ions). The ion layer formed on the surface of particles is called the double electric layer and is characterized by an electrokinetic potential, also known as the zeta potential. With a decrease in the zeta potential, the electrostatic stabilization of nanoparticles does not happen.

The problem can be solved if the nanoparticles are attached to solid supports; scientists then acquire micro- or nanosensors based on solid particles. There are not many matrix materials for these sensors, and the process of attaching the nanoparticles to supports is not a simple one, so the researchers started working on a problem of modifying the surface of sensor matrices. For that goal they proposed separating the nanoparticles from ions and chemical compounds while retaining their sensitivity.

The Russian chemists invented a technique that combines optical detection using paper test strips with triangular silver nanoparticles spread over them, and dynamic gas extraction (the extraction of a compound from a solution or a dry mixture by means of liquefied gases). Perspectives of this technique were shown by detecting chlorine. Chlorine is often used to purify water, since it destroys the outer shell of bacteria and viruses. Nevertheless, the problem of determining the chlorine concentration in water remains relevant, since the existing techniques are not sensitive enough.

Aleksei Furletov, student of the Department of Analytic Chemistry, Faculty of Chemistry, Lomonosov Moscow State University, one of the paper's authors, says: "The technique developed allows to determine small amounts of gaseous chlorine in the presence of large concentrations of foreign compounds without any sample preparation. This approach can be applied to other analytical systems based on metal nanoparticles, which opens up broad opportunities for the further development of this area of chemical analysis. "

###

The research was made in collaboration with scientists from Southern Federal University, Rostov State Medical University, and Scientific-Research Institute of Chemical Reagents and Special Purity Chemicals.

Media Contact

Yana Khlyustova
science-release@rector.msu.ru

http://www.msu.ru 

Yana Khlyustova | EurekAlert!

More articles from Materials Sciences:

nachricht Printing complex cellulose-based objects
27.03.2020 | ETH Zurich

nachricht A key development in the drive for energy-efficient electronics
24.03.2020 | University of Leeds

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

Im Focus: Peppered with gold

Research team presents novel transmitter for terahertz waves

Terahertz waves are becoming ever more important in science and technology. They enable us to unravel the properties of future materials, test the quality of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

3D printer sensors could make breath tests for diabetes possible

27.03.2020 | Power and Electrical Engineering

TU Bergakademie Freiberg researches virus inhibitors from the sea

27.03.2020 | Life Sciences

The Venus flytrap effect: new study shows progress in immune proteins research

27.03.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>