Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene crinkles can be used as 'molecular zippers'

01.02.2019

A decade ago, scientists noticed something very strange happening when buckyballs -- soccer ball shaped carbon molecules -- were dumped onto a certain type of multilayer graphene, a flat carbon nanomaterial. Rather than rolling around randomly like marbles on a hardwood floor, the buckyballs spontaneously assembled into single-file chains that stretched across the graphene surface.

Now, researchers from Brown University's School of Engineering have explained how the phenomenon works, and that explanation could pave the way for a new type of controlled molecular self-assembly.


This is a microscope view of tiny buckyballs lined up on a layered graphene surface. New research shows that that electrically charged crinkles in the graphene surface are responsible for the strange phenomenon.

Credit: Kim Lab / Brown University

In a paper published in Proceedings of the Royal Society A, the Brown team shows that tiny, electrically charged crinkles in graphene sheets can interact with molecules on the surface, arranging those molecules in electric fields along the paths of the crinkles.

"What we show is that crinkles can be used to create 'molecular zippers' that can hold molecules onto a graphene surface in linear arrays," said Kyung-Suk Kim, director of the Center for Advanced Materials Research in Brown's Institute for Molecular and Nanoscale Innovation and the study's senior author.

"This linear arrangement is something that people in physics and chemistry really want because it makes molecules much easier to manipulate and study."

The new paper is a follow-up to earlier research by Kim's team. In that first paper, they described how gently squeezing sheets of layered graphene from the side causes it to deform in a peculiar way. Rather than forming gently sloping wrinkles like you might find in a rug that's been scrunched against a wall, the compressed graphene forms pointy saw-tooth crinkles across the surface.

They form, Kim's research showed, because the arrangement of electrons in the graphene lattice causes the curvature of a wrinkle to localize along a sharp line. The crinkles are also electrically polarized, with crinkle peaks carrying a strong negative charge and valleys carrying a positive charge.

Kim and his team thought the electrical charges along the crinkles might explain the strange behavior of the buckyballs, partly because the type of multilayer graphene used in the original buckyball experiments was HOPG, a type of graphene that naturally forms crinkles when it's produced.

But the team needed to show definitely that the charge created by the crinkles could interact with external molecules on the graphene's surface. That's what the researchers were able to do in this new paper.

Their analysis using density functional theory, a quantum mechanical model of how electrons are arranged in a material, predicted that positively charged crinkle valleys should create an electrical polarization in the otherwise electrically neutral buckyballs.

That polarization should cause buckyballs to line up, each in the same orientation relative to each other and spaced around two nanometers apart.

Those theoretical predictions match closely the results of the original buckyball experiments as well as repeat experiments newly reported by Kim and his team.

The close agreement between theory and experiment helps confirm that graphene crinkles can indeed be used to direct molecular self-assembly, not only with buckyballs but potentially with other molecules as well.

Kim says that this molecular zippering capability could have many potential applications, particularly in studying biomolecules like DNA and RNA. For example, if DNA molecules can be stretched out linearly, it could be sequenced more quickly and easily. Kim and his team are currently working to see if this is possible.

"There's a lot of potential here to take advantage of crinkling and the interesting electrical properties they produce," Kim said.

###

Kim's co-authors on the paper were Mrityunjay Kothari, Moon-Hyun Cha and Victor Lefevre. The work was supported by the National Science Foundation (CMMI-1462785 and 1563591).

Media Contact

Kevin Stacey
kevin_stacey@brown.edu
401-863-3766

 @brownuniversity

http://news.brown.edu/ 

Kevin Stacey | EurekAlert!
Further information:
https://news.brown.edu/articles/2019/01/crinkles
http://dx.doi.org/10.1098/rspa.2018.0671

More articles from Materials Sciences:

nachricht Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time
17.01.2020 | Max-Planck-Institut für Polymerforschung

nachricht 3D Printing: New high-Tech Device for Bremen Material Scientists
16.01.2020 | Universität Bremen

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

Im Focus: SuperTIGER on its second prowl -- 130,000 feet above Antarctica

A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.

SuperTIGER (Super Trans-Iron Galactic Element Recorder) is designed to measure the rare, heavy elements in cosmic rays that hold clues about their origins...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

A new 'cool' blue

17.01.2020 | Life Sciences

EU-project SONAR: Better batteries for electricity from renewable energy sources

17.01.2020 | Power and Electrical Engineering

Neuromuscular organoid: It’s contracting!

17.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>