Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer IFAM is developing de-icing technologies for aircraft with European and Japanese partners

14.06.2013
The experts of Paint/Lacquer Technology at the Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Bremen are currently developing novel de-icing technologies for the next generation of aircraft.

This work is being undertaken in an international project with European and Japanese partners. The objective is to develop an integrated system comprising three synergistic components: Active de-icing technology, functional coatings which assist the de-icing function, and sensor technology which not only monitors the icing in real-time but also the de-icing.


Schematic representation of the Fraunhofer IFAM wind tunnel in which icing tests under realistic conditions will be carried out in the future. (© Fraunhofer IFAM)

The surfaces of aircraft are prone to icing during flights due to the fact that they are exposed to extremely low temperatures (down to -50 degrees Celsius at altitudes of up to 10,000 meters) and also water in the atmosphere, for example in clouds and precipitation.

The formation of ice, particularly on the wings, can lead to enormous problems due to its adverse effect on the aerodynamics and due to its weight. Besides causing higher fuel consumption and greater CO2 emissions, the ice is also a risk to the safety of an aircraft: e. g. for 1998 to 2007, the Federal Aviation Administration (FAA) in the USA recorded in its database a total of 886 incidents related to icing (G. L. Dillingham, AVIATION SAFETY – Preliminary Information on Aircraft Icing and Winter Operations. United States Government Accountability Office. Testimony before the Subcommittee on Aviation, Committee on Transportation and Infrastructure, House of Representatives (GAO-10-441T, February 2010)).

For this reason, an enormous amount of work is current being undertaken on the early detection of ice formation, the suppression of ice formation, and the removal of any ice. For example, waste heat from the engines is being utilized to heat the front edges of the wings. Other de-icing systems are based on mechanical ice removal using so-called "rubber boots". These rubber boots have air chambers which can be pumped up when needed to remove the ice from the surface.

The JEDI ACE (Japanese-European De-Icing Aircraft Collaborative Exploration) project, which was started in November 2012, aims to develop a multicomponent de-icing system suitable for the next generation of aircraft that are being built using, amongst other things, lightweight carbon fiber reinforced plastics (CFRPs). The focus here is on safety and efficiency aspects. "The new system will require considerably less energy than current system, due to the combination of innovative de-icing technologies and real-time sensors, and will decrease the number of icing-related in-flight incidents by up to 80 percent", says Gerhard Pauly of the Fraunhofer IFAM who is managing the international project.

Fraunhofer IFAM researchers are involved with the development of coatings and testing the icing properties of the surfaces. These coatings will assist the current de-icing technologies that are based on thermal and/or mechanical principles, by reducing the adhesion of the ice and so making its removal easier. As such, the efficiency of overall de-icing will be significantly improved. "The challenge is to ensure that the coatings remain effective for several years despite the high stress on the aircraft caused by, amongst other things, erosion and UV radiation and we are at present developing coating systems that have this long-term stability", explains coating expert Nadine Rehfeld of the Fraunhofer IFAM who is the scientific leader of the international project. In addition, the suitability of so-called "shape memory materials" as mechanical actuators is being studied which – when incorporated into a coating – allow ice removal by changing the surface profile. The first results on this were presented at a project meeting in Tokyo in May 2013 attended by a number of project partners: Dassault Aviation (France), University Rovira i Virgili/Centre for University Studies in Aviation (Spain), Fuji Heavy Industries Aerospace Company (Japan), Japan Aerospace Exploration Agency (Japan), and Kanagawa Institute of Technology (Japan). The next phase of the project work was also discussed at this meeting.

Another project goal within JEDI ACE is the construction of a wind tunnel by scientists from the Fraunhofer IFAM. This will enable newly developed de-icing systems to be tested under icing conditions. "Temperatures of -30 degrees Celsius and wind speeds of up to 350 kilometers per hour will be able to be attained in this tunnel. This will allow us to simulate real conditions, including with supercooled water which is also present in liquid form at temperatures below 0 degrees Celsius", explains Nadine Rehfeld.

The project is being funded by the European Commission and the Japanese Ministry of Economy, Trade and Industry (METI). The Fraunhofer IFAM is leading the scientific work and coordinating the project.

Partners of the Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in the JEDI ACE project are
• Dassault Aviation (France)
• University Rovira i Virgili/Centre for University Studies in Aviation (Spain)
• Fuji Heavy Industries Aerospace Company (Japan)
• Japan Aerospace Exploration Agency (Japan)
• Kanagawa Institute of Technology (Japan)

Contact
Paris Air Show Le Bourget 2013 I 17 to 23 June 2013 I Paris I France
Hall 1 I Booth G 316
Gerhard Pauly I Michael Wolf

Anne-Grete Becker | Fraunhofer-Institut
Further information:
http://www.ifam.fraunhofer.de

More articles from Materials Sciences:

nachricht Molecular switch detects metals in the environment
15.08.2018 | Université de Genève

nachricht Breakthrough in nanoresearch - Quantum chains in graphene nanoribbons
09.08.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>