Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer IFAM is developing de-icing technologies for aircraft with European and Japanese partners

14.06.2013
The experts of Paint/Lacquer Technology at the Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Bremen are currently developing novel de-icing technologies for the next generation of aircraft.

This work is being undertaken in an international project with European and Japanese partners. The objective is to develop an integrated system comprising three synergistic components: Active de-icing technology, functional coatings which assist the de-icing function, and sensor technology which not only monitors the icing in real-time but also the de-icing.


Schematic representation of the Fraunhofer IFAM wind tunnel in which icing tests under realistic conditions will be carried out in the future. (© Fraunhofer IFAM)

The surfaces of aircraft are prone to icing during flights due to the fact that they are exposed to extremely low temperatures (down to -50 degrees Celsius at altitudes of up to 10,000 meters) and also water in the atmosphere, for example in clouds and precipitation.

The formation of ice, particularly on the wings, can lead to enormous problems due to its adverse effect on the aerodynamics and due to its weight. Besides causing higher fuel consumption and greater CO2 emissions, the ice is also a risk to the safety of an aircraft: e. g. for 1998 to 2007, the Federal Aviation Administration (FAA) in the USA recorded in its database a total of 886 incidents related to icing (G. L. Dillingham, AVIATION SAFETY – Preliminary Information on Aircraft Icing and Winter Operations. United States Government Accountability Office. Testimony before the Subcommittee on Aviation, Committee on Transportation and Infrastructure, House of Representatives (GAO-10-441T, February 2010)).

For this reason, an enormous amount of work is current being undertaken on the early detection of ice formation, the suppression of ice formation, and the removal of any ice. For example, waste heat from the engines is being utilized to heat the front edges of the wings. Other de-icing systems are based on mechanical ice removal using so-called "rubber boots". These rubber boots have air chambers which can be pumped up when needed to remove the ice from the surface.

The JEDI ACE (Japanese-European De-Icing Aircraft Collaborative Exploration) project, which was started in November 2012, aims to develop a multicomponent de-icing system suitable for the next generation of aircraft that are being built using, amongst other things, lightweight carbon fiber reinforced plastics (CFRPs). The focus here is on safety and efficiency aspects. "The new system will require considerably less energy than current system, due to the combination of innovative de-icing technologies and real-time sensors, and will decrease the number of icing-related in-flight incidents by up to 80 percent", says Gerhard Pauly of the Fraunhofer IFAM who is managing the international project.

Fraunhofer IFAM researchers are involved with the development of coatings and testing the icing properties of the surfaces. These coatings will assist the current de-icing technologies that are based on thermal and/or mechanical principles, by reducing the adhesion of the ice and so making its removal easier. As such, the efficiency of overall de-icing will be significantly improved. "The challenge is to ensure that the coatings remain effective for several years despite the high stress on the aircraft caused by, amongst other things, erosion and UV radiation and we are at present developing coating systems that have this long-term stability", explains coating expert Nadine Rehfeld of the Fraunhofer IFAM who is the scientific leader of the international project. In addition, the suitability of so-called "shape memory materials" as mechanical actuators is being studied which – when incorporated into a coating – allow ice removal by changing the surface profile. The first results on this were presented at a project meeting in Tokyo in May 2013 attended by a number of project partners: Dassault Aviation (France), University Rovira i Virgili/Centre for University Studies in Aviation (Spain), Fuji Heavy Industries Aerospace Company (Japan), Japan Aerospace Exploration Agency (Japan), and Kanagawa Institute of Technology (Japan). The next phase of the project work was also discussed at this meeting.

Another project goal within JEDI ACE is the construction of a wind tunnel by scientists from the Fraunhofer IFAM. This will enable newly developed de-icing systems to be tested under icing conditions. "Temperatures of -30 degrees Celsius and wind speeds of up to 350 kilometers per hour will be able to be attained in this tunnel. This will allow us to simulate real conditions, including with supercooled water which is also present in liquid form at temperatures below 0 degrees Celsius", explains Nadine Rehfeld.

The project is being funded by the European Commission and the Japanese Ministry of Economy, Trade and Industry (METI). The Fraunhofer IFAM is leading the scientific work and coordinating the project.

Partners of the Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in the JEDI ACE project are
• Dassault Aviation (France)
• University Rovira i Virgili/Centre for University Studies in Aviation (Spain)
• Fuji Heavy Industries Aerospace Company (Japan)
• Japan Aerospace Exploration Agency (Japan)
• Kanagawa Institute of Technology (Japan)

Contact
Paris Air Show Le Bourget 2013 I 17 to 23 June 2013 I Paris I France
Hall 1 I Booth G 316
Gerhard Pauly I Michael Wolf

Anne-Grete Becker | Fraunhofer-Institut
Further information:
http://www.ifam.fraunhofer.de

More articles from Materials Sciences:

nachricht New metamaterial morphs into new shapes, taking on new properties
12.09.2019 | California Institute of Technology

nachricht Reconfigurable electronics show promise for wearable, implantable devices
10.09.2019 | American Institute of Physics

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

Im Focus: World record for tandem perovskite-CIGS solar cell

A team headed by Prof. Steve Albrecht from the HZB will present a new world-record tandem solar cell at EU PVSEC, the world's largest international photovoltaic and solar energy conference and exhibition, in Marseille, France on September 11, 2019. This tandem solar cell combines the semiconducting materials perovskite and CIGS and achieves a certified efficiency of 23.26 per cent. One reason for this success lies in the cell’s intermediate layer of organic molecules: they self-organise to cover even rough semiconductor surfaces. Two patents have been filed for these layers.

Perovskite-based solar cells have experienced an incredibly rapid increase in efficiency over the last ten years. The combination of perovskites with classical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Low sea-ice cover in the Arctic

13.09.2019 | Earth Sciences

Researchers produce synthetic Hall Effect to achieve one-way radio transmission

13.09.2019 | Power and Electrical Engineering

Penn engineers' new topological insulator reroutes photonic 'traffic' on the fly

13.09.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>