Tools for more accurate dosage of drugs against HIV/AIDS and malaria

Registered pharmacist Daniel Röshammar has in his thesis studied the optimal use of certain pharmaceutical substances that are used to combat HIV/AIDS and malaria. He has analysed, among other things, data from 121 healthy volunteers from Uganda using a mathematical model known as a pharmacometric model.

The study showed that both sex and genetic differences between individuals influence the way in which the body metabolises efavirenz, which is part of some anti-HIV/AIDS drugs. Other studies have focussed on 74 people from Zimbabwe with HIV/AIDS, and showed that a reduction in the daily dose of efavirenz from 600 mg to 400 mg can reduce the risk of undesired effects in those affected who have a genetically conditioned poorer ability to catabolise the substance.

“Many HIV/AIDS patients are treated with efavirenz, and they should be genetically tested using a blood test before deciding on a dose. This is particularly important in Africa, where the fraction of patients with a poorer catabolic ability is greater than it is elsewhere”, says Daniel Röshammar.

Repeated measurements of the drug concentrations and virus levels in 239 previously untreated Scandinavian patients with HIV/AIDS allowed a similar model to be used in order to study the antiretroviral effects of anti-HIV/AIDS drugs. Calculations showed that treatment in which efavirenz was combined with other pharmaceutical substances was more effective than two other frequently used combination treatments.

“It may be possible in the future to use the model to predict when the treatment will loose its effectiveness for an individual patient, and explain why”, says Daniel Röshammar.

Further work involved using a model to describe how the catabolism of the anti-malarial drug artemisinin increases and the concentration of the drug decreases when patients take this drug. When artemisinin was given to 97 patients in Vietnam without other drugs, approximately 37% of them were affected by recrudescent malaria. The model showed that this could not be explained solely by low drug concentrations. Another anti-malarial drug, piperaquine, may be a suitable partner for artemisinin in the treatment of malaria. An investigation of 12 Vietnamese study subjects, however, allowed scientists to estimate that the levels of piperaquine that remain in the body are too low to be effective, and this increases the risk that the malaria parasite will develop resistance.

“Research shows that pharmacometric models can be adapted to patient data in order to understand the relationships between drug concentration, effectiveness and the progress of disease, while at the same time taking into consideration differences between patients such as, for example, weight, age, sex, genetic factors, other diseases and other drugs. We expect that these tools will be important in the fight against HIV/AIDS and malaria”, says Daniel Röshammar.

The thesis has been written by:
Registered pharmacist Daniel Röshammar, telephone: +46 733 924602, e-mail: daniel.roshammar@pharm.gu.se
Supervisor:
Professor Michael Ashton, telephone: +46 31 786 3412, e-mail: michael.ashton@pharm.gu.se
The thesis has been presented for the degree of Doctor of Philosophy (Medicine) at the Sahlgrenska Academy, Institute of Neuroscience and Physiology

Title of the thesis: Applied Population Pharmacokinetic/Pharmacodynamic Modeling of Antiretroviral and Antimalarial Drug Therapy

Press information: Ulrika Lundin
Public relations officer, Sahlgrenska Academy at the University of Gothenburg
Telephone: +46 31 786 3869, +46 70-775 8851
e-mail: ulrika.lundin@sahlgrenska.gu.se

Media Contact

Helena Aaberg idw

Weitere Informationen:

http://hdl.handle.net/2077/19044 -

Alle Nachrichten aus der Kategorie: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Cyanobacteria: Small Candidates …

… as Great Hopes for Medicine and Biotechnology In the coming years, scientists at the Chair of Technical Biochemistry at TU Dresden will work on the genomic investigation of previously…

Do the twist: Making two-dimensional quantum materials using curved surfaces

Scientists at the University of Wisconsin-Madison have discovered a way to control the growth of twisting, microscopic spirals of materials just one atom thick. The continuously twisting stacks of two-dimensional…

Big-hearted corvids

Social life as a driving factor of birds’ generosity. Ravens, crows, magpies and their relatives are known for their exceptional intelligence, which allows them to solve complex problems, use tools…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close