GM Bacterium Helps Destroy Advanced Tumors in Mice

Generally speaking, we go to great lengths to rid our bodies of foreign bacteria, whether it’s by brushing our teeth, washing our hands or taking antibiotics. But new research suggests that when it comes to treating tumors, we may one day invite the bugs in. According to a study published yesterday in the early online edition of the Proceedings of the National Academy of Sciences, a bacterium that normally resides in soil, dust and dead flesh quickly destroys large tumors in mice when injected along with chemotherapy drugs.

Current cancer treatments are limited in part by their inability to destroy poorly vascularized areas of tumors: radiation requires oxygen to kill cells and chemotherapy drugs demand a blood system to reach their target. Anaerobic bacteria, on the other hand, actually prefer oxygen-free, or hypoxic, environments. Researchers have thus wondered for some time whether such bacteria might prove useful in combating tumors. Now Bert Vogelstein of Johns Hopkins University and his colleagues have shown that they can be. “The idea is to selectively attack these tumors from inside with the bacteria and from the outside with chemotherapy,” Vogelstein explains. The team genetically engineered the bacterium Clostridium novyi, producing a toxin-free strain that, when administered with conventional drugs, eliminated nearly half of the advanced tumors in their lab mice within 24 hours. The healthy tissues surrounding the tumors, in contrast, remained intact.

The team’s so-called combination bacteriolytic therapy (COBALT) did have some negative outcomes, however. As many as 45 percent of the mice with the largest tumors died after treatment, presumably because of toxins released by the deteriorating tumor cells. “Any therapy which dramatically shrinks tumors may be subject to this side effect,” the authors note. Yet although such tumor lysis is difficult to control in mice, it may be more easily controlled in humans. Still, whether or not COBALT will even work against human tumors at all remains to be seen. Says team member Kenneth Kinzler: “We hope that this research will add a new dimension to cancer treatment but realize that the way tumors respond to treatment in mice can be different than in humans.”

Media Contact

Kate Wong Scientific American

Alle Nachrichten aus der Kategorie: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

High-thermoresistant biopolyimides become water-soluble like starch

This is the first report for the syntheses of water-soluble polyimides which are Interestingly derived from bio-based resources, showing high transparency, tunable mechanical strength and the highest thermoresistance in water-soluble…

Land management in forest and grasslands

How much can we intensify? A first assessment of the effects of land management on the links between biodiversity, ecosystem functions and ecosystem services. Ecosystem services are crucial for human…

A molecular break for root growth

The dynamic change in root growth of plants plays an important role in their adjustment to soil conditions. Depending on the location, nutrients or moisture can be found in higher…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close