Hopkins researchers discover how nitric oxide prevents blood vessel inflammation

Johns Hopkins scientists investigating nitric oxide (NO) – the molecular messenger that contributes to body functions as wide-ranging as cell death, new blood vessel growth and erections – have figured out how it can block blood vessel inflammation and prevent clotting, a process that has long stumped biologists.

Reporting in the Oct. 17 issue of the journal Cell, cardiologist Charles J. Lowenstein, M.D., and his team observed that NO has the power to inhibit endothelial cells lining blood vessels from releasing inflammatory substances.

Normally, these cells activate a process called exocytosis (a release of substances) to start inflammation, releasing packets of molecules into the bloodstream that, like tiny hand grenades, explode and discharge compounds that trigger inflammation. NO can move in and target a protein within the endothelial cells, N-ethylmaleimide-Sensitive Factor (NSF), that stops the process from happening by blocking the ability of NSF to push out the molecules.

“Nitric oxide may regulate exocytosis this way in a variety of diseases,” says Lowenstein, an associate professor of medicine at Hopkins. “For example, nitric oxide blocks exocytosis from platelets, preventing blood clots; exocytosis from neurons, decreasing neurotoxicity in strokes; and exocystosis from lymphocytes, reducing autoimmune damage.”

The Hopkins scientists discovered NO’s protective role in both cells and mice. They added NO to human endothelial cells in culture and discovered that it blocked the release of inflammatory compounds. The researchers then found that platelets stuck to blood vessels more often in mice that could not make NO, compared to normal mice.

The findings already have led Lowenstein’s team to develop a novel drug to block exocytosis, thereby acting as an anti-clotting agent. It is a peptide that blocks exocytosis by a mechanism similar to that of nitric oxide. In laboratory tests in mice, the drug prevented tiny, disk-shaped platelets from sticking and causing blood clots. The therapy has potential to limit the amount of heart muscle damage following heart attack, or to treat people with blood-clotting disorders, Lowenstein says, but clinical trials are still years away.

The study was funded by the National Institutes of Health, the American Heart Association, Hopkins’ Ciccarone Center for the Prevention of Heart Disease, and the John and Cora H. Davis Foundation.

Coauthors were Kenji Matsushita, Craig N. Morrell, Shui-Xiang Yang, Munekazu Yamakuchi, Clare Bao, Makoto Hara, Richard A. Quick, Wangsen Cao, Brian O’Rourke and Jonathan Pevsner of Hopkins; Beatrice Cambien and Denisa D. Wagner of Harvard Medical School, and John M. Lowenstein of Brandeis University.

Matsushita, K. et al, “Nitric Oxide Regulates Exocytosis by S-Nitrosylation of N-ethylmaleimide-Sensitive Factor,” Cell, Oct. 17, 2003, Vol. 115, pages 1-20.

Media Contact

Karen Blum EurekAlert!

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors