Imperial researchers show novel flu treatment eliminates symptoms in mice

Imperial College London researchers report today in the Journal of Experimental Medicine that they have developed a novel strategy for effectively treating the symptoms of the most deadly type of flu.

Working with influenza A virus, they show in mice that their novel treatment eliminates symptoms by reducing the response of active T white blood cells by a third.

Flu A is the type of influenza responsible for pandemics such as the 1919 outbreak of ’Spanish flu’, which globally killed more than 20 million people.

Unlike current attempts to prevent or treat flu, which rely on either yearly vaccinations that try to predict how the virus might mutate, or anti viral drugs that must be administered as soon as there is contact with the virus, this new treatment can be given after symptoms present.

Dr Tracy Hussell of Imperial’s Centre for Molecular Microbiology and Infection and senior author of the paper, says:

“Three times in recent history the flu virus has evolved from a disease characterised by coughs and sneezes to a world killer. The recent SARS epidemic highlights how quickly a deadly virus can spread in modern society and we are long overdue for the next flu pandemic. The sobering reality is that influenza is one of the grand masters at evading human immune response.

“During flu infection the immune system has an ’all hands on deck’ attitude to the viral assault. But it’s this that causes most of the damage. The exaggerated immune response produces inflammatory molecules that lead to what’s known as a ’cytokine storm’. Essentially too many cells clog up the airways and prevent efficient transfer of oxygen into the bloodstream.

“By selectively reducing this cellular load we’ve shown it’s possible to eliminate clinical symptoms whilst effectively tackling and clearing the infection.”

The body has two major classes of white blood cells, T and B lymphocytes. While B cells produce tailor-made antibodies that help the body remember and quickly respond to invaders, T cells patrol the body, seek out and destroy diseased cells. But the T cell response also produces inflammatory mediators that lead to the ’cytokine storm’.

Until now, treatments to eliminate the cytokine storm have focused on inhibiting all T cells. But this leaves the patient unable to clear the virus and susceptible to other infections. Dr Hussell’s team have developed a way of down regulating a molecule known as OX40 that only targets T cells that have recently been alerted to the presence of the flu virus.

“OX40 sends out a ’survival signal’ instructing activated T cells to remain in the lungs for longer to help fight the infection. However, because new cells are arriving all the time this prolonged presence is not needed,” explains lead researcher Ian Humphreys of Imperial’s Centre for Molecular Microbiology and Infection.

“Inhibiting this signal therefore allows T cells to vacate the lungs earlier whilst leaving behind a sufficient immune presence.”

Using a fusion protein OX40:Ig supplied by the pharmaceutical company Xenova Research, the scientists were able to demonstrate that OX40:Ig blocks active T cells.

Results show six days after infection with flu, mice treated with OX40:Ig were indistinguishable from uninfected control mice. But infected mice that had not been treated lost 25 per cent of their body weight, appeared hunched, withdrawn and lost their appetite – all characteristic symptoms of flu.

When treatment with OX40:Ig was delayed for several days after infection, until the mice had lost 20 per cent of their body weight and OX40:Ig was administered, symptoms were reversed.

Re-infection also indicated that the ability of mice to respond to a second infection was not affected by the reduced T cell immunity during the initial infection.

Dr Hussell added: “There is tremendous scope for this treatment. Basically any disease that is characterised by an excessive T cell inflammatory response, whether in the lungs, in the case of Bronchitis, Asthma and Pneumonia, or in the joints, such as Rheumatoid arthritis, could be a candidate for this type of treatment. If the clinical symptoms of SARS are caused by an excessive immune responses it too could be effectively treated.”

Media Contact

Judith Moore alfa

More Information:

http://www.imperial.ac.uk

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Why getting in touch with our ‘gerbil brain’ could help machines listen better

Macquarie University researchers have debunked a 75-year-old theory about how humans determine where sounds are coming from, and it could unlock the secret to creating a next generation of more…

Attosecond core-level spectroscopy reveals real-time molecular dynamics

Chemical reactions are complex mechanisms. Many different dynamical processes are involved, affecting both the electrons and the nucleus of the present atoms. Very often the strongly coupled electron and nuclear…

Free-forming organelles help plants adapt to climate change

Scientists uncover how plants “see” shades of light, temperature. Plants’ ability to sense light and temperature, and their ability to adapt to climate change, hinges on free-forming structures in their…

Partners & Sponsors