New approach to fighting cancer could reduce costs and side effects

Cancer cells are targeted by bioengineered immune cells in the patient's system.
Credit: Carina Biotech

CAR-T biotherapeutics company Carina Biotech and researchers at the University of South Australia have developed a novel approach based on microfluidic technology to “purify” the immune cells of patients in the fight against cancer.

UniSA’s Future Industries Institute PhD student Mona Elsemary has developed a microfluidic approach to purify chimeric antigen receptor (CAR-T) cells, the bioengineered immune cells that are the basis of groundbreaking cellular immunotherapy – a transformative cancer therapy that harnesses the power of a patient’s immune system to fight their cancer.

Ms Elsemary’s work is part of Carina Biotech’s CAR-T development platform, which aims to produce effective treatments for solid cancers. Ms Elsemary will present her work tomorrow at the American Association for Cancer Research Conference on Tumor Immunology and Immunotherapy.

“CAR-T therapy has produced some remarkable results against blood cancers and there is a huge international research effort underway to transform this success into producing CAR-T treatments for solid cancers,” Ms Elsemary says.

“However, the CAR-T manufacturing process continues to be hindered by significant barriers and high costs – preventing the full potential of this life-saving therapy being reached.”

Such problems include the presence of non-viable cells and debris in the formulation and the presence of cryoprotectants (e.g., dimethyl sulfoxide or DMSO), typically used for the freezing and storage of CAR-T cell products.

The presence of dead cells can cause potentially severe side effects in recipients, and the US Federal and Drug Administration (FDA) has set strict viability specifications for CAR-T products, with approximately 10% of patients not receiving their treatment due to failure in meeting them.

The presence of cryoprotectants in final CAR-T products can also cause severe allergic reactions and toxic side effects in some patients.

“Current commercial CAR-T cell products still contain significant amounts of DMSO,” Ms Elsemere says. “Therefore, there is a significant need for a method that effectively purifies CAR T cells prior to infusion to patients. ”

The approach was developed by the University of South Australia team led by Prof Benjamin Thierry in collaboration with Assoc Prof Majid Warkiani at the University Technology Sydney, and could achieve, within 30 minutes, depletion of over 70% of dead cells in the CAR T products, leading to an average of 20% increase in cell viability.

In addition, over 90% of the cryoprotectant DSMO is removed – all with no detrimental effect on the quality and functionality of the cells.

This microfluidic technology used in the method could easily be integrated within an automated closed-cell processing system and used in non-clean room facilities, researchers say.

Ms Elsemary’s research could greatly benefit patients by reducing both manufacturing cost and side-effects commonly associated to CAR T cell therapy.

Media Contact

Candy Gibson
University of South Australia

Alle Nachrichten aus der Kategorie: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

How Stable is the Antarctic Ice Sheet?

Scientists from Heidelberg University investigate which factors determine the stability of ice masses in East Antarctica. As temperatures rise due to climate change, the melting of polar ice sheets is…

Smart sensors for future fast charging batteries

European project “Spartacus” launched Faster charging, longer stability of performance not only for electric vehicles but also for smartphones and other battery powered products. What still sounds like science fiction…

Small molecules control bacterial resistance to antibiotics

Antibiotics have revolutionized medicine by providing effective treatments for infectious diseases such as cholera. But the pathogens that cause disease are increasingly developing resistance to the antibiotics that are most…

Partners

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close