Cancer research expands body’s own immune system to kill tumors

In APL Bioengineering, researchers describe how advances in engineering models of tumors can greatly expand cancer immunotherapy's effectiveness to a wider range of cancers.

This micrograph shows breast cancer cells forming a tumor spheroid when grown under 3D culture conditions.
Credit: Joanna Lee

Scientists are working to expand the way they have made immune cells fight tumors from a small handful of cancers to a wide array of them.

Scientists are hoping advances in cancer research could lead to a day when a patient’s own immune system could be used to fight and destroy a wide range of tumors.

Cancer immunotherapy has some remarkable successes, but its effectiveness has been limited to a relatively small handful of cancers. In APL Bioengineering, by AIP Publishing, a team from Stanford University and Genentech describes how advances in engineering models of tumors can greatly expand cancer immunotherapy’s effectiveness to a wider range of cancers.

“One of the biggest breakthroughs we’ve had in cancer research in decades is that we can modify the cells in your own immune system to make them kill cancer cells,” said author Joanna Lee.

Using existing immunotherapy advances, scientists have figured out a way to make the T-cells already inside “hot” or inflamed tumors start fighting them. But that breakthrough does not help with “cold” or noninflamed tumors, because the immune cells are not in the right place.

“Now, a big push in drug discovery in cancer is how do how to make those cold tumors hot?” Lee said. “How do we get immune cells into those tumors?”

To do that, scientists need to first recreate those changes in a laboratory. While much research can be done in a 2D environment, like a petri dish, modeling the way immune cells interact with cancer requires a more advanced 3D environment.

Building the tumor microenvironment, Lee said, will require expertise from both biologists, like herself, and engineers, like co-author Ovijit Chaudhuri.

“Trying to merge those two fields together is what has made the 3D culture field really challenging,” she said. “The reason it’s so hard is we are not just talking about having a plate you throw some cells in. It is more like building a house.”

A faithful 3D model for cold tumors would make the research leading to new cancer drugs faster and more efficient. Lee said that is a big deal in a field where proposed new treatments take years to be approved and an overwhelming 96.6 % of them fail.

“If we could translate the success we’ve had with inflamed tumors to cold tumors, that would be a huge breakthrough,” Lee said. “That’s what we are going for in building these 3D culture models.”

###

The article “Perspective: Modeling the tumor immune microenvironment for drug discovery using 3D culture” is authored by Joanna Y. Lee and Ovijit Chaudhuri. The article will appear in APL Bioengineering on Feb. 2, 2021 (DOI: 10.1063/5.0030693). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/5.0030693.

ABOUT THE JOURNAL

APL Bioengineering is an open access journal publishing significant discoveries specific to the understanding and advancement of physics and engineering of biological systems. See http://aip.scitation.org/journal/apb.

Media Contact

Larry Frum
media@aip.org
301-209-3090

http://www.aip.org 

Related Journal Article

http://dx.doi.org/10.1063/5.0030693

Media Contact

Larry Frum
American Institute of Physics

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Illustration of the thermodynamics-inspired laser beam shaping process in optical thermodynamics research.

Thermodynamics-Inspired Laser Beam Shaping Sparks a Ray of Hope

Inspired by ideas from thermodynamics, researchers at the University of Rostock and the University of Southern California have developed a new method to efficiently shape and combine high-energy laser beams….

Covalent Organic Framework COF-999 structure for CO2 absorption

A Breath of Fresh Air: Advanced Quantum Calculations Enable COF-999 CO₂ Adsorption

Quantum chemical calculations at HU enable the development of new porous materials that are characterized by a high absorption capacity for CO2 Climate experts agree: To overcome the climate crisis,…

Satellite imagery showing vegetation loss due to multi-year droughts

Why Global Droughts Tied to Climate Change Have Left Us Feeling Under the Weather

A study led by the Swiss Federal Institute for Forest, Snow and Landscape Research WSL shows that there has been a worrying increase in the number of long droughts over…