Climate Changes Faster than Species Can Adapt

The study, which focuses on North American rattlesnakes, finds that the rate of future change in suitable habitat will be two to three orders of magnitude greater than the average change over the past 300 millennia, a time that included three major glacial cycles and significant variation in climate and temperature.

“We find that, over the next 90 years, at best these species’ ranges will change more than 100 times faster than they have during the past 320,000 years,” said Michelle Lawing, lead author of the paper and a doctoral candidate in geological sciences and biology at IU Bloomington. “This rate of change is unlike anything these species have experienced, probably since their formation.”

The study, “Pleistocene Climate, Phylogeny, and Climate Envelope Models: An Integrative Approach to Better Understand Species' Response to Climate Change,” was published by the online science journal PLoS One. Co-author is P. David Polly, associate professor in the Department of Geological Sciences in the IU Bloomington College of Arts and Sciences.

The researchers make use of the fact that species have been responding to climate change throughout their history and their past responses can inform what to expect in the future. They synthesize information from climate cycle models, indicators of climate from the geological record, evolution of rattlesnake species and other data to develop what they call “paleophylogeographic models” for rattlesnake ranges. This enables them to map the expansion and contraction at 4,000-year intervals of the ranges of 11 North American species of the rattlesnake genus Crotalus.

Projecting the models into the future, the researchers calculate the expected changes in range at the lower and upper extremes of warming predicted by the Intergovernmental Panel on Climate Change — between 1.1 degree and 6.4 degrees Celsius. They calculate that rattlesnake ranges have moved an average of only 2.3 meters a year over the past 320,000 years and that their tolerances to climate have evolved about 100 to 1,000 times slower, indicating that range shifts are the only way that rattlesnakes have coped with climate change in the recent past. With projected climate change in the next 90 years, the ranges would be displaced by a remarkable 430 meters to 2,400 meters a year.

Increasing temperature does not necessarily mean expanded suitable habitats for rattlesnakes. The timber rattlesnake, for example, is now found throughout the Eastern United States. The study finds that, with a temperature increase of 1.1 degree Celsius over the next 90 years, its range would expand slightly into New York, New England and Texas. But with an increase of 6.4 degrees, its range would shrink to a small area on the Tennessee-North Carolina border. The giant eastern diamondback rattlesnake would be displaced entirely from its current range in the Southeastern U.S. with a temperature increase of 6.4 degrees.

The findings suggest snakes wouldn’t be able to move fast enough to keep up with the change in suitable habitat. The authors suggest the creation of habitat corridors and managed relocation may be needed to preserve some species.

Rattlesnakes are good indicators of climate change because they are ectotherms, which depend on the environment to regulate their body temperatures. But Lawing and Polly note that many organisms will be affected by climate change, and their study provides a model for examining what may happen with other species. Their future research could address the past and future effects of climate change on other types of snakes and on the biological communities of snakes.

The article is available online at http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0028554.

Media Contact

Steve Hinnefeld Newswise Science News

More Information:

http://www.iu.edu

All latest news from the category: Environmental Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

EEG ad tDCS chould serve as the basis of therapeutic strategies to combat newrological disorders. Image Credit: Institute of Science Tokyo

Using Electroencephalography to Improve Language Disorder Treatments

Researchers work towards an inexpensive and portable solution for treating aphasia  Electroencephalography (EEG) may offer a more accessible alternative to functional magnetic resonance imaging (fMRI) for guiding transcranial direct current…

The BioSCape team is poctured with NASA and South African aircraft. Image Credit: Jeremey Shelton/Fishwater Films

Measuring Life on Earth from Space: A Global Research Project

Measurements and data collected from space can be used to better understand life on Earth. An ambitious, multinational research project funded by NASA and co-led by UC Merced civil and…

NEJM study finds patients with blockages in medium-sized vessels in the brain who had endovascular treatment did not do any better and did not see any improvement compared to patients who had the standard of care. Dr. Michael Hill, MD, Dr. Mayank Goyal, MD, PhD (right). Image Credit: Riley Brandt, University of Calgary

Best Approach for Stroke in Medium-Sized Blood Vessels Identified

Calgary’s Stroke Program advancing science to improve care, treatment and outcomes for patients  University of Calgary’s Hotchkiss Brain Institute researchers with the Calgary Stroke Program at Foothills Medical Centre revolutionized…