Family of life-extending genes discovered

Discovery sheds light on how a low-calorie diet extends lifespan

Mice, rats, worms, flies, and yeast all live longer on a low-calorie diet, which also seems to protect mammals against cancer and other aging-related diseases. A gene called SIR2 is thought to control this process. Now, researchers at Harvard Medical School and UC Davis have discovered four cousins of the SIR2 gene that also extend lifespan, suggesting that the whole family of SIR2 genes is involved in controlling lifespan. The research indicates potential targets for developing drugs to lengthen life and prevent or treat aging-related diseases. The findings are reported July 28 in the advance online edition of Science. This discovery comes on the heels of the Harvard group’s discovery of a molecule in red wine that extends the lifespan of every organism so far tested.

“We think these new Sir2 genes are as important as any longevity genes discovered so far,” said molecular biologist David Sinclair, director of the Paul F. Glenn Laboratories for Aging Research at Harvard Medical School and co-author of the new study. “There is a growing realization from the aging field that we might finally understand how to control certain aspects of the aging process and one day have drugs that can fight some of the disabilities the process causes.”

Sinclair’s research group previously reported in the journal Nature the first genetic link between environmental stresses and longer life. Triggered by low salt, heat, or extreme calorie restriction, a yeast “master longevity regulator” called PNC1 stimulated Sir2 activity. This new work, led by Harvard graduate student Dudley Lamming, demonstrates that PNC1 regulates the whole SIR2 family of genes, suggesting that a human PNC1 gene might protect against diseases of aging such as cancer, heart disease and diabetes.

Media Contact

Leah Gourley EurekAlert!

More Information:

http://www.hms.harvard.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors