Genetic selection of target stem cell populations

This advance could help scientists develop better ways of deriving useful cell populations for therapeutic and research purposes.

Although human embryonic stem cells (hESCs) can theoretically become any kind of cell in the body, directing this differentiation and selecting for a particular cell type is challenging.

Dr Chris Denning and his team at The University of Nottingham manipulated certain genetic targets in their stem cells to enhance the selection of heart muscle cells from other cell types present in their culture.

They increased the percentage of heart muscle cells present to as much as ninety-one percent by selecting out fast dividing cells and selecting for cells that expressed genes characteristic of these slower dividing cardiac cells.

According to the authors, this strategy could be easily manipulated to select for other cell types. This paper is one of the first to document the successful selection of one kind of cell in hESCs — an important step towards realizing their potential.

Dr Denning, of the Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM) at The University of Nottingham, said: “Human embryonic stem cells are remarkable because we can keep them at a primitive stage of development for a long time in the laboratory, and yet by changing their environment we can also coax them into becoming virtually any cell type within the human body.

“This includes beating heart cells, also known as cardiomyocytes. In the longer term, cardiomyocytes could be used for testing the safety of new pharmaceutical products or for transplanting into patients hearts after heart attack. The trouble is that these uses will require pure populations of cardiomyocytes but until now whenever we have produced cardiomyocytes, we have also produced many other unwanted 'contaminating' cell types such as brain cells or liver cells.

“What we describe in the present research is a method to eliminate the unwanted cells and produce almost pure populations of cardiomyocytes.

“There is still a lot of work to be done, but this really does provide a first step towards being able to use cardiomyocytes derived from human embryonic stem cells for important clinical applications.”

Media Contact

Emma Thorne alfa

More Information:

http://www.nottingham.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors