Stabilization of Miniaturized Intracavity Frequency-Doubled Lasers

Kurzbeschreibung zum Projekt, EN The so-called 'green problem' became relevant with the need to miniaturize cw intracavity frequency doubled solid state lasers. One can see the green problem as high frequency (MHz-range), high contrast ((ΔI / I> 0,6) intensity modulation.

There are mainly two standard solutions: a) using a long resonator – which means, that you must not miniaturize the laser – results in using as many longitudinal modes as mode hopping does not cause significant intensity noise. b) forcing a single mode operation, which is accompanied by significant loss of intensity. The Georg-August-Universität of Göttingen proposes a method based on a multiple time delayed feedback control. A signal generated from intensities of the fundamental modes is fed back to the pump power. The result is a highly stable output (peak-to-peak better 1%) with nearly no loss of intensity. Such stable cw-lasers with high beam quality are used in measurement and medicin, but in RGB projection systems and holografic displays. Now these systems can be miniaturized.

Further Information: PDF

MBM ScienceBridge GmbH
Phone: (0551) 30724-152

Contact
Dr. Jens-Peter Horst

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Trotting robots reveal emergence of animal gait transitions

A four-legged robot trained with machine learning by EPFL researchers has learned to avoid falls by spontaneously switching between walking, trotting, and pronking – a milestone for roboticists as well…

Innovation promises to prevent power pole-top fires

Engineers in Australia have found a new way to make power-pole insulators resistant to fire and electrical sparking, promising to prevent dangerous pole-top fires and reduce blackouts. Pole-top fires pose…

Possible alternative to antibiotics produced by bacteria

Antibacterial substance from staphylococci discovered with new mechanism of action against natural competitors. Many bacteria produce substances to gain an advantage over competitors in their highly competitive natural environment. Researchers…

Partners & Sponsors