Phase-stable Two-dimensional Spectroscopy

Optical spectroscopy in general can be used to analyze structures on an atomic level. Coherent two-dimensional (2D) spectroscopy yields information about the temporal evolution and coupling in the molecules under investigation. The idea is analogous to 2D nuclear magnetic resonance spectroscopy (NMR) which is a standard technique for analyzing molecular structures. Optical 2D spectroscopy, however, can achieve a much higher temporal resolution on the order of femtoseconds (10-15 fs) and is sensitive to the coupling of larger molecular units or colour centres (chromophores) of supramolecular structures.

The challenge to realize such spectrometers lies in the necessary relative phase-stability of the applied laser pulses. The invention uses a rather simple and cost-effective principle and design for a coherent 2D spectrometer. High phase-stability of the laser beams is inherently reached using only conventional beam splitters and mirrors, and avoiding diffractive optics, pulse shapers or phase-locking loops. This setup of the spectrometer can be constructed for a broad range of wavelengths, ranging from infrared to visible and even ultraviolet light. Especially the unrestricted utilization of visible light and light of shorter wavelengths, which is possible with this invention, will be important, as many biological systems, organic photovoltaic cells or quantum dots have absorption spectra in this wavelength range.

Further Information: PDF

Bayerische Patentallianz GmbH
Phone: +49 89 5480177-0

Contact
Peer Biskup

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Recovering phosphorus from sewage sludge ash

Chemical and heat treatment of sewage sludge can recover phosphorus in a process that could help address the problem of diminishing supplies of phosphorus ores. Valuable supplies of phosphorus could…

Efficient, sustainable and cost-effective hybrid energy storage system for modern power grids

EU project HyFlow: Over three years of research, the consortium of the EU project HyFlow has successfully developed a highly efficient, sustainable, and cost-effective hybrid energy storage system (HESS) that…

After 25 years, researchers uncover genetic cause of rare neurological disease

Some families call it a trial of faith. Others just call it a curse. The progressive neurological disease known as spinocerebellar ataxia 4 (SCA4) is a rare condition, but its…

Partners & Sponsors