Nanoparticle Photoinitiators for UV Curing Printing Inks, Varnishes and Glues

Conventionally, the curing or rather drying of printing inks, varnishes and glues is based on the evaporation of solvents. As an alternative, the use of photoinitiators has been established. These substances enable a fast and controlled curing without the help of solvents by the use of UV radiation. A disadvantage of the conventional molecular photoinitiators (e.g. Igaracure 651 or Darocur 1173) is that they are toxic for human beings due to their high chemical reactivity. During the UV curing process only about 10% of the substance is converted. The remaining 90 % can diffuse or migrate through the cured matrix. This causes problems, especially for the food industry because the toxic substances can merge into the food by different means.

The completely new photoinitiators for printing inks, varnishes and glues presented here are based on photo catalytic functionalized semiconductor nanoparticles. The photo catalytic activity could be increased considerably through a synergetic effect between the nanoparticle and the mediator molecule. A single nanoparticle is 700 times more efficient than a classic molecular initiator molecule. Due to its mass the particle cannot migrate through the cured matrix. The molecules which have not been converted by UV irradiation stay attached to the immobilized nanoparticle. The new photoinitiators as compared to the commercial initiators offer the opportunity to cure printing inks, varnishes and glues very fast and without the contamination of the environment.

Further Information: PDF

Universität des Saarlandes Wissens- und Technologietransfer GmbH PatentVerwertungsAgentur der saarländischen Hochschulen
Phone: +49 (0)681/302-6340

Contact
Dr. Annekathrin Seifert (Dipl.-Chem.), Dipl.-Kfm. Axel Koch (MBA), Dr. Hauke Studier (Dipl.-Phys.)

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors