Researchers develop a solid material with mobile particles that react to the environment

At high temperatures (left) particles move freely in the droplets and lend the material a ruby red color; they agglomerate at lower temperatures (right) and change the material’s color to grey-violet Copyright: INM; free within this press release

How does one get solid particles to move inside a solid material? „You rarely want this to happen in steel, concrete, or plastics, because free motion usually implies a weak spot in the material. In our active nanocomposites, particles are decoupled from the main material inside small compartments, while the rest remains stable,” says Tobias Kraus, Head of the Structure Formation Group at INM.

The research team used a trick: like raisins in a pudding, they distributed small liquid droplets in a polymer. The droplets contained gold nanoparticles that move freely inside each droplet, something they could not do in the solid:

“The particles are now free to either agglomerate or freely move in the entire droplet. The nanocomposite’s color depends on how far the nanoparticles are from each other, it changes from ruby red to grey-violet in our example. The particles can separate again, and the color change is fully reversible,” explains Professor Kraus.

The naked eye can discern neither the droplets nor the nanoparticles inside. The entire composite is translucent; it simply changes its color depending on temperature. “The result is relevant for applications that require transparent materials. We envision coating it onto clear films, for example,” says the material scientist Kraus.

In the current publication, the particles agglomerate depending on temperature. In the future, the scientists want the nanocomposite to react to chemical stimuli. „One may use this to directly visualize high Vitamin C concentrations or toxins, for example,” ponders Kraus.

Your expert at INM:
Prof. Dr. Tobias Kraus
Head Structure Formation
Phone: +49681-9300-389
tobias.kraus@leibniz-inm.de

David Doblas Jiménez, Jonas Hubertus, Thomas Kister, Tobias Kraus, „A translucent nanocomposite with liquid inclusions of a responsive nanoparticle dispersion“; Advanced Materials, https://doi.org/10.1002/adma.201803159

Media Contact

Dr. Carola Jung idw - Informationsdienst Wissenschaft

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors