Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reducing noise actively – exhibits of EU project InMar at darmstadtium

11.04.2008
How noise can be reduced with smart materials has been shown by representatives from the areas of research, industry as well as small- and medium-sized enterprises at the final conference of the EU project Inmar at the conference center darmstadtium on April 10th.

For the first time, the research results were presented, which can be achieved using "intelligent" materials systems for noise and vibration reduction of technical products in automobiles, rail vehicles and infrastructures like veneers and bridges. Among other things, noise reduced exhibits such as a gearbox mounting, a compressor of an air conditioner and a sound insulation window have been shown. The four-year research and development work of the 41 partners from 13 countries was coordinated by the Fraunhofer LBF in Darmstadt.

With 23 sub-projects and a 27-million euros total budget, InMar belongs to one of the most extensive research projects on noise abatement in Europe.

For the people in Germany, noise remains one of the most intensively perceived environmental impairments. Europe-wide, more than 100 million people are affected by noise exposure. The nationwide “Tag gegen Lärm” (International Noise Awareness Day), on April 16th, 2008 will inform about the harmful effects of noise.

In this context the scientists from the European project InMar - Intelligent Materials for Active Noise Reduction – researched the suitability of functional materials and the performance of active structural systems to reduce noise and vibrations. In order to reduce the vibrations, the researchers linked the sensor and actuator functions of materials with electronic controllers. Sensors and actuators can be used specifically to respond to variable operating conditions: depending on the oscillation, frequency countercurrent sound waves are introduced into the structure. This reduces the expansion of sound waves and the noise source is actively subdued. This way the mechanical properties, such as the damping behavior or the stiffness, can be adapted by software. Also, vibrations can be decreased by functional materials, noise can be reduced or the shape of components can be controlled. They are frequently called “intelligent”, because these components can adapt specifically to their environment as needed.

"With most of the active solutions developed for cars, trains and infrastructure elements, the noise pollution can be reduced by up to 10 dB”, says Dr. InMar project coordinator, Thilo Bein of Fraunhofer LBF.

"Sound waves must be decreased exactly in the frequency ranges, which are perceived as very stressful. Noise consists of many overlapping sound waves in different frequency ranges. Due to the adaptability of active structure systems, the vibration behaviour can be changed in those areas where they are most effective”, explains Bein.

In the wake of the European Environmental Noise Directive (2002/49/EC), it is necessary to “avoid the harmful effects, including harassment by ambient noise, or prevent or decrease them."

In this context, several demonstrations with smart materials were developed by scientists from the InMar project. As examples of the 23 sub-projects in the area of automobiles, railway vehicles and infrastructure may be mentioned:

- a gearbox mounting of a car which actively reduces vibration transmission in the body with intelligent materials. By means of structural-dynamic measurements significant transmission paths and directions for the sound in the frequency range from 0 to 250 Hz were identified. Based on measured data and using simulation tools, different approaches of active intervention were investigated.

- a compressor of an air conditioner, of which oscillations are reduced with an active vibration absorber. A passive spiral-spring-system is used to decrease the vibrations of the compressor in a specific frequency range. With attached piezoelectric patches additional oscillations in the actually passive vibration absorber can be induced, which actively change the natural frequency of the damper in the range of -12 to + 3 Hz.

- a sound-proof window for low frequencies, to prevent aircraft noise or bass sound from discos. "The window can reduce test signals in the frequency range between 50 Hz and 1000 to six decibels in average - the sound behind the window is only half as loud," says Dr. Joachim Bös of the Technical University of Darmstadt, Department of System Reliability and Machine Acoustics. "The volume of individual test signals can be reduced even up to 15 decibels." Regarding the motor noisiness of passenger aircrafts, the experts expect noise reduction below 1000 Hz of up to 10 dB in the future.

Trescher Dino | alfa
Further information:
http://www.inmar.info
http://www.lbf.fraunhofer.de

More articles from Trade Fair News:

nachricht Hannover Messe 2018: Cognitive system for predictive acoustic maintenance
19.04.2018 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht ILA 2018: Cost-effective carbon fibers for light-weight construction
18.04.2018 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>