Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reducing noise actively – exhibits of EU project InMar at darmstadtium

11.04.2008
How noise can be reduced with smart materials has been shown by representatives from the areas of research, industry as well as small- and medium-sized enterprises at the final conference of the EU project Inmar at the conference center darmstadtium on April 10th.

For the first time, the research results were presented, which can be achieved using "intelligent" materials systems for noise and vibration reduction of technical products in automobiles, rail vehicles and infrastructures like veneers and bridges. Among other things, noise reduced exhibits such as a gearbox mounting, a compressor of an air conditioner and a sound insulation window have been shown. The four-year research and development work of the 41 partners from 13 countries was coordinated by the Fraunhofer LBF in Darmstadt.

With 23 sub-projects and a 27-million euros total budget, InMar belongs to one of the most extensive research projects on noise abatement in Europe.

For the people in Germany, noise remains one of the most intensively perceived environmental impairments. Europe-wide, more than 100 million people are affected by noise exposure. The nationwide “Tag gegen Lärm” (International Noise Awareness Day), on April 16th, 2008 will inform about the harmful effects of noise.

In this context the scientists from the European project InMar - Intelligent Materials for Active Noise Reduction – researched the suitability of functional materials and the performance of active structural systems to reduce noise and vibrations. In order to reduce the vibrations, the researchers linked the sensor and actuator functions of materials with electronic controllers. Sensors and actuators can be used specifically to respond to variable operating conditions: depending on the oscillation, frequency countercurrent sound waves are introduced into the structure. This reduces the expansion of sound waves and the noise source is actively subdued. This way the mechanical properties, such as the damping behavior or the stiffness, can be adapted by software. Also, vibrations can be decreased by functional materials, noise can be reduced or the shape of components can be controlled. They are frequently called “intelligent”, because these components can adapt specifically to their environment as needed.

"With most of the active solutions developed for cars, trains and infrastructure elements, the noise pollution can be reduced by up to 10 dB”, says Dr. InMar project coordinator, Thilo Bein of Fraunhofer LBF.

"Sound waves must be decreased exactly in the frequency ranges, which are perceived as very stressful. Noise consists of many overlapping sound waves in different frequency ranges. Due to the adaptability of active structure systems, the vibration behaviour can be changed in those areas where they are most effective”, explains Bein.

In the wake of the European Environmental Noise Directive (2002/49/EC), it is necessary to “avoid the harmful effects, including harassment by ambient noise, or prevent or decrease them."

In this context, several demonstrations with smart materials were developed by scientists from the InMar project. As examples of the 23 sub-projects in the area of automobiles, railway vehicles and infrastructure may be mentioned:

- a gearbox mounting of a car which actively reduces vibration transmission in the body with intelligent materials. By means of structural-dynamic measurements significant transmission paths and directions for the sound in the frequency range from 0 to 250 Hz were identified. Based on measured data and using simulation tools, different approaches of active intervention were investigated.

- a compressor of an air conditioner, of which oscillations are reduced with an active vibration absorber. A passive spiral-spring-system is used to decrease the vibrations of the compressor in a specific frequency range. With attached piezoelectric patches additional oscillations in the actually passive vibration absorber can be induced, which actively change the natural frequency of the damper in the range of -12 to + 3 Hz.

- a sound-proof window for low frequencies, to prevent aircraft noise or bass sound from discos. "The window can reduce test signals in the frequency range between 50 Hz and 1000 to six decibels in average - the sound behind the window is only half as loud," says Dr. Joachim Bös of the Technical University of Darmstadt, Department of System Reliability and Machine Acoustics. "The volume of individual test signals can be reduced even up to 15 decibels." Regarding the motor noisiness of passenger aircrafts, the experts expect noise reduction below 1000 Hz of up to 10 dB in the future.

Trescher Dino | alfa
Further information:
http://www.inmar.info
http://www.lbf.fraunhofer.de

More articles from Trade Fair News:

nachricht New Process Technology Unlocks Boost in Laser Productivity
18.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht OLED microdisplays as high-precision optical fingerprint sensors
09.05.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>