Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heraeus Noblelight Strahler auf der DRUPA 2008

06.03.2008
Energy savings at High Speed
Carbon Infrared emitters dry more efficiently
  • Medium wave carbon infrared emitters dry water-based inks more efficiently
  • Carbon emitters help to dry items of personalised printing at high speed
  • Heraeus Noblelight is showing Carbon heaters for personalised digital printing at DRUPA

Carbon Infrared (CIR) emitters from Heraeus Noblelight dry ink jet printing inks especially efficiently. This is because medium wave infrared radiation is transferred into ink at high power. Above all, medium wave infrared radiation is absorbed very well by water-based inks. Consequently, carbon emitters can allow the printing of personalised mailings at high speed, saving energy and operating costs.

Carbon infrared heaters need nothing but the emitter operating in the near infrared region. There is no need for water cooling, allowing significantly reduced maintenance costs. The systems are easy to clean and need to be shut down less often. At DRUPA, Hall 3 Stand C35, Heraeus Noblelight will be showing Carbon infrared heaters for personalised digital printing in operation. Visitors will be able to see for themselves the fast response times of emitters.

Whether it be for publicity letters, brochure or direct mail shots, personalised digital printing is standard today. Essentially, pre-printed items are assembled as rolls or as individual sheets and then provided with the personalised printing in a given area. This personalised printing must be reliably and safely dried before the printed item can move to the next production stage, be this cutting, folding or gluing. The selection of the correct drier is not only vital for reasons of quality but also to ensure that the printing can be carried out at high speed. Medium wave emitters lend themselves especially to the drying of water-based inks. Infrared radiation in the medium wave region is that best absorbed by water. This helps to heat the ink in a focused manner, while, at the same time, treating the paper and the printing machine gently.

“Medium wave carbon infrared (CIR) emitters are particularly well suited as they combine effective medium wave lengths with high power and fast response times. Carbon emitters are fairly standard emitters in this segment” says Holger Zissing, Printing Applications Specialist at Heraeus Noblelight.

By using carbon emitters, which are precisely matched to the product and process, energy consumption can be significantly reduced. The Lettershop Group (TLG), one of Europe’s leading direct communications organisations, has already experienced this. TLG uses the latest web and sheet-fed technology to produce the highest quality direct mail print. Earlier, the drying process was carried out by using very high power, short wave infrared emitters, operating in the near infrared region. Since TLG converted to medium wave Carbon Infrared (CIR) for the drying process, they have been able to save around £30,000 per print line per year.

The new emitters require very little maintenance, as cleaning now takes only two to three hours compared with the two days of the short wave system. And after nearly two years, the first CIR emitters are still in full operation.
The new system also shows greater tolerance to sensitive papers, as the paper is heated only to around 30-35ºC, as opposed to the 60-70ºC of the short wave system.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China, Australia and Puerto Rico, is one of the technology- and market-leaders in the production of specialist light sources. In 2006, Heraeus Noblelight had an annual turnover of 88 Million € and employed 651 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical laboratories.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company in the business segments of precious metals, sensors, dental and medical products, quartz glass and specialty lighting sources. With revenues of more than EUR 10 billion and more than 11,000 employees in over 100 companies, Heraeus has stood out for more than 155 years as one of the world’s leading companies involved in precious metals and materials technology.


Further Information:

Readers:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
phone +49 6181/35-8545, fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com

Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
phone +49 6181/35-8547, fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com

More articles from Trade Fair News:

nachricht High Resolution Laser Structuring of Thin Films at LOPEC 2017
21.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Open ecosystem for smart assistance systems
20.03.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>