Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel coatings combine protection with colour effects

27.03.2015

New coloured protective coatings offer corrosion and wear protection and could for instance also be used as a warning colour on surfaces which can get very hot.

New coloured protective coatings offer the same corrosion and wear protection as colourless coatings while their colouration opens new opportunities. Red could for instance be used as a warning colour on surfaces which can get very hot.

The new possibilities from combining protection and colour in such coatings will be demonstrated by INM – Leibniz Institute for New Materials at this year’s Hannover Fair from 13 to 17 April as an exhibitor at the leading Research & Technology trade fair (stand B46 in hall 2).

“Incorporating coloured pigments in nanocomposites make coatings possible which are not only protective but also deliver additional visual information via their colouration,” explains Peter William de Oliveira, head of the IZI - Innovation Center INM.

A protective coating for surfaces of ovens, chimneys or certain automotive parts could be coloured red for instance. So such parts would not only be protected from corrosion, wear and oxidation but at the same time also be distinctive to the consumer by virtue of their colour.

To create a full red shade without brown content, INM researchers are currently working on ceramic particles with red pigments free from iron oxide. Chemical compounds previously used were not very suitable for such applications.

“Organic compounds do make for very nice reds – but they are unsuitable for such protective coatings, since organics do not survive high temperatures,” explains the physicist de Oliveira, “Iron oxides do withstand high temperatures when used as colouring particles for reds, but do not give full reds.”

Black coloured coatings with a thickness of two to five micrometres can withstand temperatures up to 900 degrees Celsius, but also coatings with a reddish brown colour with resistance can endure up to 500 degrees Celsius. INM researchers are also developing protective coatings using blue and green pigments. Current developments at INM enable the use of these coloured glass-ceramic layers on metals and glasses. The pigments are incorporated in sol-gel nanocomposites and applied by dipping or spraying.

Your expert at the INM:
Dr. Peter William de Oliveira
INM – Leibniz Institute for New Materials
Head Optical Materials
Head IZI – Innovation Center INM
Phone: +49681-9300-148
peter.oliveira@inm-gmbh.de
izi@inm-gmbh.de

Your contacts at the stand B46 in hall 2:
Dr. Thomas Müller
Dr. Michael Opsölder

INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for medical surfaces, new surface materials for tribological systems and nano safety and nano bio. Research at INM is performed in three fields: Nanocomposite Technology, Interface Materials, and Bio Interfaces.
INM – Leibniz Institute for New Materials, situated in Saarbrücken, is an internationally leading centre for materials research. It is an institute of the Leibniz Association and has about 210 employees.

Weitere Informationen:

http://www.inm-gmbh.de/en

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

More articles from Trade Fair News:

nachricht High Resolution Laser Structuring of Thin Films at LOPEC 2017
21.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Open ecosystem for smart assistance systems
20.03.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>