Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New nano-paint reduces the cost of processing foodstuffs

13.04.2016

Heat exchangers are used in numerous steps throughout proessing foodstuffs. In spite of the fact that the large surface in the heat exchangers cools down the heated, liquid foodstuffs again quickly, microbes can remain stuck in the numerous grooves and recesses of the heat exchanger, persistent biofilms can form or sticky residues accumulate. As a result, heat exchangers must be cleaned using aggressive chemicals. Now INM is introducing new nano-coatings that reduce the effort required for cleaning heat exchangers. In these new coatings, the research scientists combine antiadhesive and antimicrobial qualities.

The developers will be demonstrating their results and the possibilities they offer at stand B46 in hall 2 at this year's Hanover Trade Fair as part of the leading trade show Research & Technology which takes place from 25th to 29th April.


Antifouling treatment for heat-exchangers: New nano-coatings have an anti-adhesive and antimicrobial effect.

Copyright: INM

To prevent microbes, bacteria or fungus from adhering to surfaces, the scientists use colloidal copper in the coating. Due to the oxygen or water that is present in many foodstuff processes, copper ions are created from the copper.

These travel to the surface and, as a result of their antimicrobial effect, they prevent microbes from settling there. The developers achieve the anti-adhesive characteristics by introducing hydrophobic compounds that are similar to common Teflon. These prohibit the formation of any undesired biofilm and allow residues to be transported out more easily before they clog up the channels of the heat exchangers.

... more about:
»COPPER »Neue Materialien »foodstuffs »surfaces

“In addition, we can keep the paint chemically stable. Otherwise it would not withstand the aggressive chemicals that are required for cleaning,” explained Carsten Becker-Willinger, Head of Nanomers® at INM. Adding that the paint could also be adapted for special mechanical loads, he explained that this was important for paint used in heat exchangers, too.

Due to mechanical vibrations, the individual plates of the heat exchangers could be subjected to a certain amount of abrasion at points of contact.

Principally, the paint developed could also be used in other contexts, Becker-Willinger said, including the large sector of air conditioning with heat exchangers. Furthermore, the paint could be used for cleaning waste water in water purification plants, for example, to prevent biofilm from accumulating on filters or tubes.

The paint can be applied using standard methods such as spraying or immersion and subsequent hardening. It can be used on stainless steel, alloys, titanium or aluminum. By selectively adapting individual constituents, the developers are able to respond to the particular, special requirements of interested users.

Your contact at Stand B46 in hall 2:
Dr. Marlon Jochum

Your expert at INM:
Dr.-Ing. Carsten Becker-Willinger
INM – Leibniz Institute for New Materials
Head Nanomers®
Phone: +49681-9300-196
nanomere@leibniz-inm.de

INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for medical surfaces, new surface materials for tribological systems and nano safety and nano bio. Research at INM is performed in three fields: Nanocomposite Technology, Interface Materials, and Bio Interfaces.
INM – Leibniz Institute for New Materials, situated in Saarbrücken, is an internationally leading center for materials research. It is an institute of the Leibniz Association and has about 220 employees.

Weitere Informationen:

http://www.leibniz-inm.de/en
http://www.leibniz-gemeinschaft.de/en

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

Further reports about: COPPER Neue Materialien foodstuffs surfaces

More articles from Trade Fair News:

nachricht COMPAMED 2017: New manufacturing processes for customized products
06.12.2017 | IVAM Fachverband für Mikrotechnik

nachricht SYSTEMS INTEGRATION 2018 in Switzerland focuses on building blocks for industrial digitalization
20.11.2017 | IVAM Fachverband für Mikrotechnik

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>