Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared Emitters allow particle-free plastic welding

03.08.2012
Intake pipes, ventilation parts and containers for brake fluid or windscreen wiper water in cars have to withstand pressure.

These pipes and containers are often injection molded as plastic half shells before being welded together to form the finished product. Infrared heating technology helps to join the parts securely together without creating particles in the insides of the tubes. In many cases, a combination of infrared pre-heating and vibration welding can prove particularly advantageous.





Infrared heating helps to achieve particle-free welding of plastic tubes.

Copyright Heraeus Noblelight 2012

The infrared radiation melts the plastic surface so that particle formation is minimized during the vibration process. This creates a more secure joint and a flawless container. Heraeus Noblelight will be showing application-optimized infrared emitters for plastics processing on Stand 1121, Hall B1 at Fakuma, which takes place in Friedrichshafen from 16 to 20 October.

Injection molded pressure tubes are used in radiators or in turbo motors and containers for water or brake fluid. Welding seams must withstand pressure and whether in the turbo or in the brake fluid, plastic particles created during production will disrupt the component function. Infrared radiation is transferred without contact and generates heat directly in the work piece. As a result it is superior to conventional methods such as heating by contact plates. Also unlike welding with contact heat, infrared heating leaves no hot plastic on the heating source. Consequently, plastic parts can be welded reproducibly in seconds.

Infrared radiation melts the target surfaces in a targeted manner in a matter of seconds and these can then be joined by simply pressing them together. According to the type of plastic, large particles can be created during vibration welding and these can find their way subsequently into cooling water, servo oil or brake fluid, with adverse effect on function. It can also be uncomfortable for a driver to have particles blown into the inside of the car through the air ducting.

A combination of infrared emitters with vibration welders provides a practical remedy to the problem. An infrared module passes between two plastic parts and heats the surfaces of both parts without contact. When the specified temperature is achieved, the infrared module is removed and the actual welding process begins. Tests carried out with users have shown that the seams welded with the aid of infrared radiation are able to withstand very high pressure.

Infrared Emitters Are Exactly Matched

Shape, color and material properties of the plastic part define the result of the welding or joining process:

• Short wave emitters and Carbon infrared emitters respond to control commands within seconds. As a result, the correct intensity and duration of the radiation can be selected to melt different plastics.

• Filler materials have influence on the welding result. Mineral fillers in plastics provide fire-resistance and reinforcement with glass fibers improves the pressure stability of containers. Unfortunately, the higher the filler content, the harder are the plastics to weld. Fire-retarding materials melt with difficulty and a glass fiber content greater than 35% can make the welding process almost impossible. Unlike contact plates, infrared emitters cannot be damaged by glass fibers, as heating is contact-free.

• Black plastics absorb infrared radiation generally better than white or transparent plastics. Test have shown that half shells of polyamide, which are joined together to create a hollow body, reach the target temperature three times faster in black material than in light colored materials.

• A real challenge is the welding of three dimensional shapes. The more complex the structure, the more difficult the complete process. Vibration welding under these conditions is completely impossible because some shapes can no longer oscillate. Infrared offers a solution here as it is possible to shape emitters three-dimensionally.

• Standard surface emitters can be used for different geometries if they are matched to the plastic component by cover masks. As a result, several components can be processed simply and quickly with one surface emitter. In addition, the cover masks minimize any stray radiation into the immediate environment of the welding system.

Carefully chosen infrared emitters help to provide high quality joining of plastic components for cars. As the infrared emitters need be switched on only when the heat is actually required, welding with infrared heat is also extremely energy-efficient.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company with more than 160 years of tradition. Our fields of competence include precious metals, materials, and technologies, sensors, biomaterials, and medical products, as well as dental products, quartz glass, and specialty light sources. With product revenues of €4.8 billion and precious metal trading revenues of €21.3 billion, as well as more than 13,300 employees in over 120 subsidiaries worldwide, Heraeus holds a leading position in its global markets.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China and Australia, is one of the technology- and market-leaders in the production of specialist light sources. In 2011, Heraeus Noblelight had an annual turnover of 103 Million € and employed 731 people worldwide. The organization develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical measurement techniques.

For further information, please contact:

Technical:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Abteilung Marketing/Werbung
Tel +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com/infrared

More articles from Trade Fair News:

nachricht New Process Technology Unlocks Boost in Laser Productivity
18.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht OLED microdisplays as high-precision optical fingerprint sensors
09.05.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>