Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared Emitters allow particle-free plastic welding

03.08.2012
Intake pipes, ventilation parts and containers for brake fluid or windscreen wiper water in cars have to withstand pressure.

These pipes and containers are often injection molded as plastic half shells before being welded together to form the finished product. Infrared heating technology helps to join the parts securely together without creating particles in the insides of the tubes. In many cases, a combination of infrared pre-heating and vibration welding can prove particularly advantageous.





Infrared heating helps to achieve particle-free welding of plastic tubes.

Copyright Heraeus Noblelight 2012

The infrared radiation melts the plastic surface so that particle formation is minimized during the vibration process. This creates a more secure joint and a flawless container. Heraeus Noblelight will be showing application-optimized infrared emitters for plastics processing on Stand 1121, Hall B1 at Fakuma, which takes place in Friedrichshafen from 16 to 20 October.

Injection molded pressure tubes are used in radiators or in turbo motors and containers for water or brake fluid. Welding seams must withstand pressure and whether in the turbo or in the brake fluid, plastic particles created during production will disrupt the component function. Infrared radiation is transferred without contact and generates heat directly in the work piece. As a result it is superior to conventional methods such as heating by contact plates. Also unlike welding with contact heat, infrared heating leaves no hot plastic on the heating source. Consequently, plastic parts can be welded reproducibly in seconds.

Infrared radiation melts the target surfaces in a targeted manner in a matter of seconds and these can then be joined by simply pressing them together. According to the type of plastic, large particles can be created during vibration welding and these can find their way subsequently into cooling water, servo oil or brake fluid, with adverse effect on function. It can also be uncomfortable for a driver to have particles blown into the inside of the car through the air ducting.

A combination of infrared emitters with vibration welders provides a practical remedy to the problem. An infrared module passes between two plastic parts and heats the surfaces of both parts without contact. When the specified temperature is achieved, the infrared module is removed and the actual welding process begins. Tests carried out with users have shown that the seams welded with the aid of infrared radiation are able to withstand very high pressure.

Infrared Emitters Are Exactly Matched

Shape, color and material properties of the plastic part define the result of the welding or joining process:

• Short wave emitters and Carbon infrared emitters respond to control commands within seconds. As a result, the correct intensity and duration of the radiation can be selected to melt different plastics.

• Filler materials have influence on the welding result. Mineral fillers in plastics provide fire-resistance and reinforcement with glass fibers improves the pressure stability of containers. Unfortunately, the higher the filler content, the harder are the plastics to weld. Fire-retarding materials melt with difficulty and a glass fiber content greater than 35% can make the welding process almost impossible. Unlike contact plates, infrared emitters cannot be damaged by glass fibers, as heating is contact-free.

• Black plastics absorb infrared radiation generally better than white or transparent plastics. Test have shown that half shells of polyamide, which are joined together to create a hollow body, reach the target temperature three times faster in black material than in light colored materials.

• A real challenge is the welding of three dimensional shapes. The more complex the structure, the more difficult the complete process. Vibration welding under these conditions is completely impossible because some shapes can no longer oscillate. Infrared offers a solution here as it is possible to shape emitters three-dimensionally.

• Standard surface emitters can be used for different geometries if they are matched to the plastic component by cover masks. As a result, several components can be processed simply and quickly with one surface emitter. In addition, the cover masks minimize any stray radiation into the immediate environment of the welding system.

Carefully chosen infrared emitters help to provide high quality joining of plastic components for cars. As the infrared emitters need be switched on only when the heat is actually required, welding with infrared heat is also extremely energy-efficient.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company with more than 160 years of tradition. Our fields of competence include precious metals, materials, and technologies, sensors, biomaterials, and medical products, as well as dental products, quartz glass, and specialty light sources. With product revenues of €4.8 billion and precious metal trading revenues of €21.3 billion, as well as more than 13,300 employees in over 120 subsidiaries worldwide, Heraeus holds a leading position in its global markets.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China and Australia, is one of the technology- and market-leaders in the production of specialist light sources. In 2011, Heraeus Noblelight had an annual turnover of 103 Million € and employed 731 people worldwide. The organization develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical measurement techniques.

For further information, please contact:

Technical:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Abteilung Marketing/Werbung
Tel +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com/infrared

More articles from Trade Fair News:

nachricht Bug-proof communication with entangled photons
22.06.2017 | Fraunhofer-Gesellschaft

nachricht LZH at the LASER World of Photonics 2017: Light for Innovation
16.06.2017 | Laser Zentrum Hannover e.V.

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>