Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared Emitters allow particle-free plastic welding

03.08.2012
Intake pipes, ventilation parts and containers for brake fluid or windscreen wiper water in cars have to withstand pressure.

These pipes and containers are often injection molded as plastic half shells before being welded together to form the finished product. Infrared heating technology helps to join the parts securely together without creating particles in the insides of the tubes. In many cases, a combination of infrared pre-heating and vibration welding can prove particularly advantageous.





Infrared heating helps to achieve particle-free welding of plastic tubes.

Copyright Heraeus Noblelight 2012

The infrared radiation melts the plastic surface so that particle formation is minimized during the vibration process. This creates a more secure joint and a flawless container. Heraeus Noblelight will be showing application-optimized infrared emitters for plastics processing on Stand 1121, Hall B1 at Fakuma, which takes place in Friedrichshafen from 16 to 20 October.

Injection molded pressure tubes are used in radiators or in turbo motors and containers for water or brake fluid. Welding seams must withstand pressure and whether in the turbo or in the brake fluid, plastic particles created during production will disrupt the component function. Infrared radiation is transferred without contact and generates heat directly in the work piece. As a result it is superior to conventional methods such as heating by contact plates. Also unlike welding with contact heat, infrared heating leaves no hot plastic on the heating source. Consequently, plastic parts can be welded reproducibly in seconds.

Infrared radiation melts the target surfaces in a targeted manner in a matter of seconds and these can then be joined by simply pressing them together. According to the type of plastic, large particles can be created during vibration welding and these can find their way subsequently into cooling water, servo oil or brake fluid, with adverse effect on function. It can also be uncomfortable for a driver to have particles blown into the inside of the car through the air ducting.

A combination of infrared emitters with vibration welders provides a practical remedy to the problem. An infrared module passes between two plastic parts and heats the surfaces of both parts without contact. When the specified temperature is achieved, the infrared module is removed and the actual welding process begins. Tests carried out with users have shown that the seams welded with the aid of infrared radiation are able to withstand very high pressure.

Infrared Emitters Are Exactly Matched

Shape, color and material properties of the plastic part define the result of the welding or joining process:

• Short wave emitters and Carbon infrared emitters respond to control commands within seconds. As a result, the correct intensity and duration of the radiation can be selected to melt different plastics.

• Filler materials have influence on the welding result. Mineral fillers in plastics provide fire-resistance and reinforcement with glass fibers improves the pressure stability of containers. Unfortunately, the higher the filler content, the harder are the plastics to weld. Fire-retarding materials melt with difficulty and a glass fiber content greater than 35% can make the welding process almost impossible. Unlike contact plates, infrared emitters cannot be damaged by glass fibers, as heating is contact-free.

• Black plastics absorb infrared radiation generally better than white or transparent plastics. Test have shown that half shells of polyamide, which are joined together to create a hollow body, reach the target temperature three times faster in black material than in light colored materials.

• A real challenge is the welding of three dimensional shapes. The more complex the structure, the more difficult the complete process. Vibration welding under these conditions is completely impossible because some shapes can no longer oscillate. Infrared offers a solution here as it is possible to shape emitters three-dimensionally.

• Standard surface emitters can be used for different geometries if they are matched to the plastic component by cover masks. As a result, several components can be processed simply and quickly with one surface emitter. In addition, the cover masks minimize any stray radiation into the immediate environment of the welding system.

Carefully chosen infrared emitters help to provide high quality joining of plastic components for cars. As the infrared emitters need be switched on only when the heat is actually required, welding with infrared heat is also extremely energy-efficient.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company with more than 160 years of tradition. Our fields of competence include precious metals, materials, and technologies, sensors, biomaterials, and medical products, as well as dental products, quartz glass, and specialty light sources. With product revenues of €4.8 billion and precious metal trading revenues of €21.3 billion, as well as more than 13,300 employees in over 120 subsidiaries worldwide, Heraeus holds a leading position in its global markets.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China and Australia, is one of the technology- and market-leaders in the production of specialist light sources. In 2011, Heraeus Noblelight had an annual turnover of 103 Million € and employed 731 people worldwide. The organization develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical measurement techniques.

For further information, please contact:

Technical:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Abteilung Marketing/Werbung
Tel +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com/infrared

More articles from Trade Fair News:

nachricht COMPAMED 2017: New manufacturing processes for customized products
06.12.2017 | IVAM Fachverband für Mikrotechnik

nachricht SYSTEMS INTEGRATION 2018 in Switzerland focuses on building blocks for industrial digitalization
20.11.2017 | IVAM Fachverband für Mikrotechnik

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

Guardians of the Gate

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>