Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increasing the Productivity of Ultrafast Laser Systems

17.06.2015

To advance the development of ultrafast laser systems for the industry, research institutes are now concentrating on increasing system productivity. To achieve this goal, Fraunhofer ILT is working in several different ways: on the one hand it is building stronger systems with record performances in the kW range. On the other hand, its researchers are working on tailor-made solutions for different applications. At LASER 2015, Fraunhofer ILT will be presenting, among others, a module for pulse shortening and a test system for an adjustable infrared laser with high power, each of which show new ways to increase efficiency in materials processing.

At the last UKP-Workshop: Ultrafast Laser Technology in Aachen from Fraunhofer ILT in April 2015, the participants agreed that an increase in productivity is currently the most important issue in industrial ultrafast lasers. The increase depends on many parameters, for example, the pulse energy, repetition rate and process control. Shorter pulses allow for greater precision and completely new machining processes, e.g., by multiphoton absorption or filament formation in glass.


Thin Disc amplifier with 1.5 kW

© Fraunhofer ILT, Aachen, Germany

New Module to Shorten the Pulses of Ultrafast Lasers with Highest Average Power

Fraunhofer ILT has now developed an optical module that shortens the pulse duration of powerful ultrafast lasers by a factor of four. The compact module is suitable for use in lasers with up to 1 kW average power and energy from 10 to 200 µJ. A 1 ps pulse can thus be compressed to about 250 fs, during which less than 10 percent of energy is lost and the beam quality is maintained.

The patent-pending technology of the pulse-shortening module was funded by the Federal Ministry of Education and Research (BMBF) as part of the FOCUS project. In the further development of the module, significantly higher pulse energies are to be achieved.

The pulse-shortening module can be combined with a femtosecond laser in the power range of 150 W, which has been newly developed at Fraunhofer ILT. The module has been fine-tuned for robustness and economy thanks to its particularly simple design. In its power class, it is even superior to the significantly more powerful INNOSLAB laser. Both concepts are characterized by their almost diffraction-limited beam quality.

New Record: Femtosecond Laser with 1.5 kW

By combining Thin Disk and INNOSLAB amplifiers, Fraunhofer ILT has set a new record for ultrafast lasers: the system delivers 1.5 kW average power at a pulse duration of 710 fs. Further optimization specifically of the thin-disk amplifier system should enable power beyond the 2 kW limit. This development has been supported by the BMBF as part of the FOCUS Project, as well as by the TRUMPF Group.

Industrial laser systems in this power class are particularly suitable for the processing of large parts, for example, those made of carbon fiber reinforced plastic (CFRP).

Powerful USP system for the SWIR Range

New beam sources for the infrared range at wavelengths of 1.5 to 3.5 µm (SWIR) provide an example of ultrafast laser technology solutions by Fraunhofer ILT, tailored for specific applications. Many technically and economically interesting material classes have an extremely high absorption in SWIR, which makes a series of innovative applications possible. So far, however, there has been a lack of sufficiently powerful lasers in this range.

Scientists at Fraunhofer ILT have now developed a test system that delivers laser power even over 20 W at 1.6 to 3.0 µm. The pulse duration can be between 900 fs and 1.5 ns. They are currently working on power scaling to more than 50 W. The test system can be adapted to different drive lasers and, thus, provide a wide range of application parameters.
The new system allows users to make both feasibility studies and provides process-optimized beam parameters for production.

Fraunhofer ILT at the LASER World of Photonics in Munich, Germany

From 22 - 25 June 2015 experts from the Fraunhofer ILT will be showing, among others, the module for pulse shortening for ultrafast laser systems and the test system for adjustable infrared lasers with high power at the Fraunhofer joint stand A3.121.
The researchers will also be presenting the exhibits at the Fraunhofer media tour on Tuesday, June 23, 2015. It starts at 11:00 a.m. at Booth 341 in Hall B3 and ends at approximately 12:00 midday at Booth 121 in Hall A3, followed by a discussion and light refreshments.

Contact

Dr. Peter Rußbüldt
Group Manager Ultrafast Lasers
Telephone +49 241 8906-303
peter.russbueldt@ilt.fraunhofer.de

Dipl.-Phys. Thomas Sartorius
Ultrafast Lasers
Telephone +49 241 8906-615
thomas.sartorius@ilt.fraunhofer.de

Dr. Bernd Jungbluth
Group Manager Nonlinear Optics and Tunable Lasers
Telephone +49 241 8906-414
bernd.jungbluth@ilt.fraunhofer.de

Fraunhofer-Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Weitere Informationen:

http://www.ilt.fraunhofer.de

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Trade Fair News:

nachricht New VDI standards established for cleanroom technology
11.09.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Cleaning is just the beginning
11.09.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>