Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An electronic green thumb

01.02.2012
"embedded world" trade fair - Nuremberg

If sensors are supposed to communicate with each other to compare the measured data and to secure them, then, in the future, a network of distributed sensor nodes will aid in that: the network ensures a problem-free communication between the sensors. For example, they can be used to reliably monitor the watering of plants. At the ‘embedded world’ trade fair, taking place from 2/28 - 3/1 in Nuremberg (Germany), the researchers are showcasing a technological demonstration (Hall 5, Booth 228).

A green thumb is required where plants are to grow abundantly – that also applies to watering them in dry areas. If they are watered too much, then the soil becomes saline; if the plants receive too little moisture, they let their leaves droop and, in the worst case, they wither. In the future, sensors in the soil, a central unit and an associated app will supplement the green thumb: one look at the smart phone and the farmer will know what moisture content the soil has. Which plants need water, which do not? If the plants get too dry, the farmer is alerted by SMS; the same applies if there is too much water flowing onto the fields.

Watering is one of the potential applications for the new technology developed by the researchers at the Fraunhofer Institute for Telecommunications HHI in Berlin. “The basis is a central unit that connects all types of sensors securely and reliably with each other”, says Jens Krüger, scientist at the HHI. This unit records the data of all sensors and forwards them to an Internet browser or an app on an Android smart phone, where the user can call them up and enter limit values – in the case of the watering system they might be humidity values. If these threshold values are under or over, he will receive an SMS on his mobile phone. “We use existing technology and customize it so the user can access it”, says Krüger. This means: The sensors that the researchers connect to this central unit via sensor nodes are commercially available – what is new is the platform, via which they communicate with each other, and the language, or rather, the protocol that they use for their communication.

The special part: the sensors need not be installed in a complex manner, they contact the central unit automatically. The required sensors simply need to be inserted and away we go. “The system we developed gets to know the sensors automatically. To achieve this, we developed our own protocol that the sensors and the base unit use to communicate”, says Krüger. Another benefit: the central unit does work similar to a computer, but it has an embedded system with micro-controls and an operating system and therefore is far more energy-efficient: it uses only two watts. In comparison, a PC would use roughly 150 Watts.

A demonstrator comprising the central unit and several sensor nodes already exists. Currently, the sensors are connected via cable, in the future, however, they will radio their data wirelessly to the unit. If some of the sensors are no longer within radio range, they will first send their measurement results to other sensors that are closer to the central unit and which will transmit the signals to the unit. To illustrate the capabilities, the researchers connected to the demonstrator sensors that measure humidity, temperature and leakage. The system also works for any other type of sensor, such as noise sensors. For instance, they might also be used to protect critical infrastructures such as water mains, main electric lines of the electrical grid or railway lines and alert to thieves trying to steal the copper. In these cases, the sensor would detect, for example, noises made by digging. If one sensor detects such a respective noise, it connects via radio to the other sensors and compares the results. The system calculates the exact spot the digging takes place with the help of the data that is recorded by neighboring sensors. The system will emit an alarm if there is an electricity cable or a water main.

Jens Krüger | Fraunhofer-Institut
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/january/electronic-green-thumb.html

More articles from Trade Fair News:

nachricht New Process Technology Unlocks Boost in Laser Productivity
18.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht OLED microdisplays as high-precision optical fingerprint sensors
09.05.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>