Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


An electronic green thumb

"embedded world" trade fair - Nuremberg

If sensors are supposed to communicate with each other to compare the measured data and to secure them, then, in the future, a network of distributed sensor nodes will aid in that: the network ensures a problem-free communication between the sensors. For example, they can be used to reliably monitor the watering of plants. At the ‘embedded world’ trade fair, taking place from 2/28 - 3/1 in Nuremberg (Germany), the researchers are showcasing a technological demonstration (Hall 5, Booth 228).

A green thumb is required where plants are to grow abundantly – that also applies to watering them in dry areas. If they are watered too much, then the soil becomes saline; if the plants receive too little moisture, they let their leaves droop and, in the worst case, they wither. In the future, sensors in the soil, a central unit and an associated app will supplement the green thumb: one look at the smart phone and the farmer will know what moisture content the soil has. Which plants need water, which do not? If the plants get too dry, the farmer is alerted by SMS; the same applies if there is too much water flowing onto the fields.

Watering is one of the potential applications for the new technology developed by the researchers at the Fraunhofer Institute for Telecommunications HHI in Berlin. “The basis is a central unit that connects all types of sensors securely and reliably with each other”, says Jens Krüger, scientist at the HHI. This unit records the data of all sensors and forwards them to an Internet browser or an app on an Android smart phone, where the user can call them up and enter limit values – in the case of the watering system they might be humidity values. If these threshold values are under or over, he will receive an SMS on his mobile phone. “We use existing technology and customize it so the user can access it”, says Krüger. This means: The sensors that the researchers connect to this central unit via sensor nodes are commercially available – what is new is the platform, via which they communicate with each other, and the language, or rather, the protocol that they use for their communication.

The special part: the sensors need not be installed in a complex manner, they contact the central unit automatically. The required sensors simply need to be inserted and away we go. “The system we developed gets to know the sensors automatically. To achieve this, we developed our own protocol that the sensors and the base unit use to communicate”, says Krüger. Another benefit: the central unit does work similar to a computer, but it has an embedded system with micro-controls and an operating system and therefore is far more energy-efficient: it uses only two watts. In comparison, a PC would use roughly 150 Watts.

A demonstrator comprising the central unit and several sensor nodes already exists. Currently, the sensors are connected via cable, in the future, however, they will radio their data wirelessly to the unit. If some of the sensors are no longer within radio range, they will first send their measurement results to other sensors that are closer to the central unit and which will transmit the signals to the unit. To illustrate the capabilities, the researchers connected to the demonstrator sensors that measure humidity, temperature and leakage. The system also works for any other type of sensor, such as noise sensors. For instance, they might also be used to protect critical infrastructures such as water mains, main electric lines of the electrical grid or railway lines and alert to thieves trying to steal the copper. In these cases, the sensor would detect, for example, noises made by digging. If one sensor detects such a respective noise, it connects via radio to the other sensors and compares the results. The system calculates the exact spot the digging takes place with the help of the data that is recorded by neighboring sensors. The system will emit an alarm if there is an electricity cable or a water main.

Jens Krüger | Fraunhofer-Institut
Further information:

More articles from Trade Fair News:

nachricht Creating living spaces for people: The »Fraunhofer CityLaboratory« at BAU 2017
14.10.2016 | Fraunhofer-Gesellschaft

nachricht Reducing Weight through Laser-assisted Material Processing in Automobile Construction
13.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>