Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deformable mirror corrects errors

15.05.2014

Very high power is needed to cut or weld using a laser beam. But this creates its own problem: the beam’s energy deforms the mirrors that are focusing it to a point. When this happens, the beam expands and loses intensity. A new type of mirror can deform itself so as to correct this unwanted deformation. It will be presented at the Optatec trade fair in Frankfurt from May 20 to 22 (hall 3, booth D50).

Lasers are used in manufacturing to cut materials or weld components together. Laser light is focused to a point using various lenses and mirrors; the smaller the focal point and the higher the energy, the more accurately operators can work with the laser. So, turn up the power and off you go, right?


Thermic-piezoelectric deformable mirror to be used in high power laser systems.

© Fraunhofer IOF

It is not that simple because when laser power increases, the mirror heats up accordingly, causing it to deform. A deformed mirror cannot effectively focus the laser; the focal point gets bigger and laser power falls away.

Precisely correcting unwanted deformation

Scientists are working on ways of making the mirrors more temperature-resistant and getting rid of the deformation. However, this difficult undertaking only works up to a point. Researchers at the Fraunhofer Institute for Applied Optics and Precision Engineering IOF in Jena are pursuing a completely different approach. “We’ve developed a mirror that doesn’t prevent deformation by the laser, but corrects it,” explains Dr. Claudia Reinlein, from Fraunhofer IOF. “By deliberately heating up the mirror to a precisely controlled level, we balance out the unwanted deformation by the laser.”

Working with colleagues from Fraunhofer IKTS and Ilmenau University of Technology, the scientist designed a ceramic mirror with a copper layer on the front and built-in temperature sensors and filaments. When a laser beam heats up the mirror, the sensors detect the change. Software calculates how strongly the mirror is deforming from the heat and sends a corresponding current of electrical power through the filaments. These heat up accordingly and balance out the unwanted deformation.

On the back of the mirror, the researchers have fitted a piezoelectric layer that can also deform the mirror and correct all further errors that could disrupt the laser beam. The scientists have already developed a prototype of the mirror and are presenting it at the Optatec trade fair in Frankfurt am Main from May 20 to 22 (hall 3, booth D50). Currently the researchers still have to control the system manually, but the mirror should be able to correct deformations automatically in future.

Lasers as “guardian angels” for satellites

power laser is directed at the dust particle, the beam can push the particle outward and change its path to avoid collision with the satellite.

However, one problem is that atmospheric turbulence can alter the laser beam; which is where the deformable mirror can come to the rescue. First the researchers send a beam from a separate laser into the atmosphere and analyze how the turbulence changes it. Based on this data, they can then deform the mirror using the filaments and a piezoelectric layer such that the laser beam hits the dust particle with just the right focus.

Kevin Füchsel | Eurek Alert!
Further information:
http://www.fraunhofer.de/en/press/research-news/2014/may/optatec-2014-deformable-mirror-corrects-errors.html

Further reports about: Engineering IOF Precision atmosphere copper errors filaments mirror piezoelectric

More articles from Trade Fair News:

nachricht Heraeus Noblelight at the Drupa 2016
02.05.2016 | Heraeus Noblelight GmbH

nachricht Flexible robot systems for digitalized production
27.04.2016 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Quantum Logical Operations Realized with Single Photons

03.05.2016 | Physics and Astronomy

Discovery of a fundamental limit to the evolution of the genetic code

03.05.2016 | Life Sciences

Cavitation aggressive intensity greatly enhanced using pressure at bubble collapse region

03.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>