Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deformable mirror corrects errors

15.05.2014

Very high power is needed to cut or weld using a laser beam. But this creates its own problem: the beam’s energy deforms the mirrors that are focusing it to a point. When this happens, the beam expands and loses intensity. A new type of mirror can deform itself so as to correct this unwanted deformation. It will be presented at the Optatec trade fair in Frankfurt from May 20 to 22 (hall 3, booth D50).

Lasers are used in manufacturing to cut materials or weld components together. Laser light is focused to a point using various lenses and mirrors; the smaller the focal point and the higher the energy, the more accurately operators can work with the laser. So, turn up the power and off you go, right?


Thermic-piezoelectric deformable mirror to be used in high power laser systems.

© Fraunhofer IOF

It is not that simple because when laser power increases, the mirror heats up accordingly, causing it to deform. A deformed mirror cannot effectively focus the laser; the focal point gets bigger and laser power falls away.

Precisely correcting unwanted deformation

Scientists are working on ways of making the mirrors more temperature-resistant and getting rid of the deformation. However, this difficult undertaking only works up to a point. Researchers at the Fraunhofer Institute for Applied Optics and Precision Engineering IOF in Jena are pursuing a completely different approach. “We’ve developed a mirror that doesn’t prevent deformation by the laser, but corrects it,” explains Dr. Claudia Reinlein, from Fraunhofer IOF. “By deliberately heating up the mirror to a precisely controlled level, we balance out the unwanted deformation by the laser.”

Working with colleagues from Fraunhofer IKTS and Ilmenau University of Technology, the scientist designed a ceramic mirror with a copper layer on the front and built-in temperature sensors and filaments. When a laser beam heats up the mirror, the sensors detect the change. Software calculates how strongly the mirror is deforming from the heat and sends a corresponding current of electrical power through the filaments. These heat up accordingly and balance out the unwanted deformation.

On the back of the mirror, the researchers have fitted a piezoelectric layer that can also deform the mirror and correct all further errors that could disrupt the laser beam. The scientists have already developed a prototype of the mirror and are presenting it at the Optatec trade fair in Frankfurt am Main from May 20 to 22 (hall 3, booth D50). Currently the researchers still have to control the system manually, but the mirror should be able to correct deformations automatically in future.

Lasers as “guardian angels” for satellites

power laser is directed at the dust particle, the beam can push the particle outward and change its path to avoid collision with the satellite.

However, one problem is that atmospheric turbulence can alter the laser beam; which is where the deformable mirror can come to the rescue. First the researchers send a beam from a separate laser into the atmosphere and analyze how the turbulence changes it. Based on this data, they can then deform the mirror using the filaments and a piezoelectric layer such that the laser beam hits the dust particle with just the right focus.

Kevin Füchsel | Eurek Alert!
Further information:
http://www.fraunhofer.de/en/press/research-news/2014/may/optatec-2014-deformable-mirror-corrects-errors.html

Further reports about: Engineering IOF Precision atmosphere copper errors filaments mirror piezoelectric

More articles from Trade Fair News:

nachricht IVAM Product Market „High-tech for Medical Devices“ at COMPAMED 2017
18.10.2017 | IVAM Fachverband für Mikrotechnik

nachricht Fiber Optic Collimation C-Lenses will be Exhibited by FISBA at OFC 2017
14.03.2017 | FISBA AG

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>