Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Improvement of LTE system performance by reducing changes of inter-cell interference levels


Interference is one of the most performance-limiting factors in wireless communications systems. The standard of 3GPP Long Term Evolution (LTE) employs Orthogonal Frequency Division Multiple Access (OFDMA) in the downlink, where orthogonality between different users within one cell can be guaranteed by scheduling simultaneously in frequency and time domain. However, LTE is designed to consider a frequency reuse factor of one between adjacent cells leading to strong inter-cell-interference between adjacent cells. Users especially located at cell edges may experience strong interference by transmissions from neighboring cells, scheduling their users at the same physical resource. Thus, intercell interference coordination (ICIC) techniques are an indispensable and widely discussed topic in the standardization process of LTE. Scientists at the Department of Communications Engineering at the University of Bremen developed a coordination scheme to improve the reallocation procedure of succeeding pre-coding matrices, while avoiding sudden change in the inter-cell interference experienced at neighboring cells. To do so, they use the fact that different matrix combinations exhibit lower variations in the inter-cell-interference than others. The advantage of this approach is that the variation of the interference level is only determined by the two pre-coding matrices of the allocation, and not by further network, mobile devices or transmission specific parameters This will lead to significant improvement on system performance on mobile devices to an edge of a cell or located next to base stations as well of base stations without impact on LTE standard. Besides, network stability is also improved. Up to now, simulations of the computer-implemented method are successful.

Further information: PDF

InnoWi GmbH
Phone: +49 (0)421/9600-722

Cornelia Sitte

As Germany's association of technology- and patenttransfer agencies TechnologieAllianz e.V. is offering businesses access to the entire range of innovative research results of almost all German universities and numerous non-university research institutions. More than 2000 technology offers of 14 branches are beeing made accessable to businesses in order to assure your advance on the market. At a free, fast and non-bureaucratic access to all further offers of the German research landscape is offered to our members aiming to sucessfully transfer technologies. | TechnologieAllianz e.V.
Further information:

More articles from Technology Offerings:

nachricht Method and Device for Two-Dimensional Separation of Ionic Species
27.10.2016 | TechnologieAllianz e.V.

nachricht Shaft power plant
27.10.2016 | TechnologieAllianz e.V.

All articles from Technology Offerings >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>