Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DFG To Establish Ten New Collaborative Research Centres

05.12.2007
The Topics Range from Inflammation of the Brain, to the Distribution of Oxygen in the Oceans, to Nanoscopic Structures in the Macroscopic World

On 1 January 2008 the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) will establish ten new Collaborative Research Centres, which will receive a total of 74.4 million euros in funding over the next four years, as well as a lump sum of 20 percent to cover indirect costs incurred by the projects.

The new Collaborative Research Centres (SFBs) will address a range of topics, including inflammation of the brain, the distribution of oxygen in tropical oceans, and nanoscopic structures in the macroscopic world. Other topics will include the neurobiological basis for behaviour, managing cycles in innovation processes, and the development of high brilliance lasers and other novel components. Two of the ten newly established Collaborative Research Centres are Transregional Collaborative Research Centres, which are based at more than one location.

At its meeting in Bonn on 20-21 November, the relevant Grants Committee also approved the continuation of 26 existing SFBs for an additional funding period. The DFG will thus fund a total of 259 Collaborative Research Centres as of the beginning of next year. In total, they will receive 403 million euros in funding in 2008, plus the 20 percent programme overhead.

The new Collaborative Research Centres:

“The Brain as a Target of Inflammatory Processes” is the topic of SFB/Transregional Collaborative Research Centre 43, which will involve scientists from Berlin and Göttingen. Research will focus on inflammatory and immune reactions in the brain, an area that has received less attention in the past than research focussing on inflammatory processes outside the brain. The projects they plan include an attempt to find out what role inflammation plays in traumatic and neurodegenerative processes. Their main focus will be on diseases such as stroke, Alzheimer's and multiple sclerosis. They hope that their insights will find their way into clinical practice and therapy in the long term.

(Host institutions: Charité – University Hospital of the Humboldt University Berlin and the Free University of Berlin. Coordinator: Frauke Zipp)

SFB/Transregional Collaborative Research Centre 54 “Growth and Survival, Plasticity and Cellular Interactivity of Lymphatic Malignancies” will study how cancer cells adapt to their surroundings in patients suffering from diseases of the lymph nodes, thus possibly making it harder or even impossible for them to recover. Participating researchers from Berlin and Munich will combine animal experiments and patient-oriented projects aimed at developing novel therapeutic approaches to diseases such as Hodgkin's lymphoma, multiple myelomas and other malignant diseases of the lymphatic system. (Host institution: Charité – University Hospital of the Humboldt University Berlin and the Free University of Berlin. Coordinator: Bernd Dörken)

SFB 754 “Climate – Biogeochemistry Interactions in the Tropical Oceans” will examine a topic that is of great interest in the light of climate change. It will involve oceanographers, geoscientists and microbiologists from Kiel, who will study the distribution of oxygen in tropical oceans. Of particular interest to them is how the oxygen concentration can fall dramatically due to interactions between physical, biological and geochemical processes, and what consequences this has on the nutrient balance in the ocean and on the climate. This research will be carried out with the help of the German research vessels Meteor, Merian and Sonne. (Host university: Christian-Albrechts University, Kiel. Coordinator: Douglas W.R. Wallace)

Surface physics, magnetism, semiconductor physics, materials science and theoretical physics are the common elements of SFB 762 “Functionality of Oxidic Interfaces”. The researchers involved, from Halle, Leipzig and Magdeburg, will investigate the production of oxide heterostructures and the characterisation of their structural, ferroelectric, magnetic and electronic properties using state-of-the-art scientific methods and equipment. In addition to producing new fundamental insights, this work is also of high practical relevance, for instance for the development of new types of sensors and computer memory. (Host university: Martin Luther University of Halle-Wittenberg. Coordinator: Ingrid Mertig)

SFB 765 “Multivalency as a Chemical Organisation and Action Principle: New Architectures, Functions and Applications” aims to lay the necessary groundwork for answering key issues in biological and material sciences. In this SFB, scientists from the Free University of Berlin plan to cooperate with other institutions in Berlin to study the phenomenon of multivalency in detail, paying particular attention to the fundamental chemical and biological mechanisms and molecular architectures. In the long term, they hope their work will lead to the development of novel multivalent molecules that may be of great importance for use in inhibiting inflammation or providing protection against viral infections, as well as for optimising surfaces. (Host university: Free University of Berlin. Coordinator: Rainer Haag)

SFB 767 “Controlled Nanosystems: Interaction and Interfacing to the Macroscale” will investigate one of the key areas of research in the 21st century. Participating researchers from Constance and Stuttgart aim to discover how nanostructures interact with each other and with macroscopic structures – issues that are of fundamental importance for nanotechnology, but which have not yet been systematically addressed. The theoretical and experimental studies they plan promise to not only yield key insights into the basic science of nanostructures, but also a wide variety of applications in the fields of telecommunications and data storage as well as for highly integrated circuits. (Host university: University of Konstanz. Coordinator: Elke Scheer)

SFB 768 “Managing Cycles in Innovation Processes – Integrated Development of Product Service Systems Based on Technical Products” will address a topic that is of equal importance to science, industry and consumers. In this SFB, mechanical engineers, computer scientists and sociologists as well as researchers from marketing and other areas will collaborate to study the cycles that are affected by technical, competitive and social influences, which have a major influence on the development and introduction to market of innovative products and services, sometimes in a very negative way. The projects they have planned cover the entire spectrum of cyclic processes of innovation, from product planning through to marketing, and from tangible goods to services, for the first time. Vendors and customers alike will benefit from their findings. (Host university: Technical University of Munich. Coordinator: Udo Lindemann)

SFB 779 will examine the “Neurobiology of Motivated Behaviour”. Researchers will aim to identify the connection between deliberate actions, the brain structures and neural interconnections on which these actions are based, and the neurochemistry involved. The main focus will also be on pathological changes that occur in the course of various neuropsychiatric diseases. Participating scientists from Magdeburg and Leipzig will use a combination of approaches at various levels in their human and animal experiments, ranging from molecular biology to neurophysiology and psychology. They will begin by concentrating on fundamental questions about actions motivated by “how and why”, which, in the longer term, may lead to important clinical applications. (Host university: Otto von Guericke University Magdeburg. Coordinator: Thomas F. Münte)

“Synaptic Mechanisms of Neuronal Network Function” is the subject of SFB 780, which will address key issues relating to the functioning of neuronal networks, examining them at three different levels – the structural aspects of individual synapses, analysis of functional networks, and modelling and analysis of human diseases. The researchers, from Freiburg and Basel, will use approaches from molecular biology, neurophysiology, genetics, anatomy and clinical medicine to investigate these issues. They hope that their findings will lead to a better understanding and more effective therapy of neuronal diseases such as epilepsy and Parkinson’s disease. (Host university: Albert Ludwigs University of Freiburg. Coordinator: Peter Jonas)

SFB 787 “Semiconductors – Nanophotonics: Materials, Models, Components” aims to develop novel photonic and nanophotonic components from a variety of materials. The researchers, from Berlin and Magdeburg, will combine three complementary areas of research: material science, modelling, and production and characterisation of components. This will allow theoreticians and experimental researchers to collaborate closely in basic and applied areas. Working on this basis, they hope, in the long term, to be able to generate very high frequency and ultrashort pulses with laser diodes and semiconductor amplifiers as well as high brilliance lasers in the infra-red to green spectral range. (Host university: Technical University of Berlin. Coordinator: Michael Kneissl)

Jutta Höhn | alfa
Further information:
http://www.dfg.de/sfb

More articles from Science Education:

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>