Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Graduates of Rothschild-Weizmann Program for Excellence in Science Teaching

02.11.2011
The first class of 26 outstanding science and math teachers has complete an advanced degree program at the Weizmann Institute.

Twenty-six science teachers have completed advanced studies in the Rothschild-Weizmann Program for Excellence in Science Teaching and will be awarded M.Sc. degrees in science teaching from the Feinberg Graduate School of the Weizmann Institute of Science. This unique program, the first of its kind in Israel, is designed for high-school science teachers. In the upcoming year, about 100 will be enrolled in the two-year program.

The Program is based on the belief that the best way to improve science education is to groom excellent teachers. Thus, the Rothschild-Weizmann Program invites top science teachers to participate. In cooperation with Weizmann Institute scientists, an intensive study program was put together, in which the students deepen their knowledge in all fields of science, meet with scientists and visit their labs, learn about the latest scientific advances, gain new approaches to teaching, participation in Institute research on science education, and receive opportunities to lead new educational initiatives.

The Rothschild-Weizmann Program, supported by the Caesarea Edmond Benjamin de Rothschild Foundation, was established three years ago at the initiative of the Institute administration and the Science Teaching Department. Heading the program, which is given through the Feinberg Graduate School, are Prof. Shimon Levit of the Faculty of Physics and Prof. Bat Sheva Eylon, Head of the Science Teaching Department.

“Program alumnae can influence the educational system on many levels,” says Eylon. “A teacher can work within his or her own school, in the community or on a national level; he or she can participate in the development of educational materials or spread ideas though interactions with fellow teachers.” To further this goal, Rothschild-Weizmann Program graduates are offered a continuing program, which focuses on creating and leading new educational initiatives in conjunction with the Science Teaching Department and the Davidson Institute of Science Education.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,700 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org.

Yivsam Azgad | idw
Further information:
http://wis-wander.weizmann.ac.il
http://wis-wander.weizmann.ac.il/first-graduates-of-rothschild-weizmann-program-for-excellence-in-science-teaching

More articles from Science Education:

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Young people discover the "Learning Center"
20.09.2016 | Research Center Pharmaceutical Engineering GmbH

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>