Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World record: 400 W femtosecond laser for ultra-precise materials processing

12.05.2009
Femtosecond lasers (fs-lasers) are the key to ultra-precision processing.

Whether in medicine, electronics, aerospace or solar technology, thin coatings can be removed, fiber-reinforced plastics drilled and ceramic components' surfaces structured using fs-lasers.


World record: 400 W femtosecond laser developed by the Fraunhofer ILT for ultra-precise materials processing. Picture source: Fraunhofer Institute for Laser Technology ILT, Aachen

Wider use of fs-lasers, however, is hampered by the average output which is currently limited to below 100 W on commercial systems. At the LASER World of Photonics 2009 in Munich the Fraunhofer Institute for Laser Technology ILT will show for the first time the currently most powerful ultra-short-pulse laser module with an output of over 400 watts and pulse durations of less than 1 ps.

Femtosecond (fs) lasers, i.e. lasers with pulse durations of less than one picosecond, have experienced a stormy development on the scientific front since their beginnings 35 years ago. The interaction of fs-laser radiation with material is characterized by the fact that the pulse duration is shorter than most interaction times between atoms or atoms and electrons. Thus, when material is processed, heat conduction, melting, evaporation and plasma formation only take place after the impact of the laser radiation. In contrast to longer nanosecond pulses or continuous wave (cw) lasers, no direct interaction of light and diffusing material takes place, which facilitates high-precision material removal. With fs-lasers it is therefore possible to achieve processing results which cannot be matched by any other method.

A major obstacle to the widespread use of present fs-lasers, however, is their average output power. Whereas cw-fiber and disk lasers nowadays reach an average output of a kilo-watt and more with diffraction-limited beam quality, the output power of fs-lasers is typically in the range of a single watt. 50-watt lasers are regarded as the high-end range for commercial lasers. Owing to their complex design, the price for such systems is a few hundred thousand euros. The high price and output-limited processing speed are therefore restricting the present potential of fs-lasers. Up to now they have not been widely embraced in production.

At the LASER World of Photonics 2009 the Fraunhofer ILT is unveiling the currently most powerful ultra-short-pulse laser module. This was developed in part under the LASERTRON (FKZ 13N8720) joint project with funding from the German Ministry of Education and Research (BMBF) under the FEMTONIK program. With an average output of more than 400 watts, it holds the world record for average output among lasers with pulse durations of less than one picosecond.

This was made possible by reinterpreting the InnoSlab technology which has been under development at the Fraun-hofer Institute for Laser Technology (ILT) for more than 10 years. This technology already forms the basis for numerous nano- and picosecond laser systems in industrial use. The extremely simple construction of the single-pass amplifier with four mirrors and one laser crystal permits an opto-mechanically and thermally robust and compact design.

In addition, a reduction and adaptation of the intensities arising is concept-inherent and makes it possible to reach pulse energies below one millijoule - which are relevant in particular for micro materials processing - without the need for complex chirped pulse amplification (CPA). This represents a further breakthrough for the simplification of fs-laser systems and the costs they entail, which is a key requirement for their widespread use in industrial practice.

The innovative laser from the Fraunhofer ILT is characterized by the fact that the oscillators with an output power of 1-2 watts can be amplified up to 400 watts by means of a single amplifier stage. At full output, a beam quality of M2

Further highlights include pulse durations below 700 fs and spectral bandwidths below 2 nm. The pulses are therefore distinctly shorter than on present ps-lasers and produce better results, for example in micro materials processing. Also, the bandwidth and wavelength unrestrictedly permit the use of the same optics as on typical ps and ns lasers. Special attachments for time compression (compressors), as frequently necessary on ultra-short-pulse lasers, are no longer required. The problems which can be caused by these attachments, such as pulse front / phase front tilt, therefore do not arise.

Given the bandwidth-limited spectrum and the high pulse peak output power, the laser radiation is very suitable for non-linear frequency conversion. Ongoing tasks include frequency doubling, compression of the pulse duration and production of high harmonics. Use in the scientific field will be made possible in future by increasing the pulse energy to the multi 10mJ range at several 100 watts of average output using additional CPA.

According to all the theoretical and experimental findings, the practical limits of the ultra-short-pulse laser have not yet been reached. The Fraunhofer ILT is therefore already working on scaling the innovative fs-laser to outputs of greater than 1000 watts. The results of the new technology will be presented to a broad specialist public at the joint Fraunhofer stand in Hall C2 at LASER 2009 in Munich from June 15 to 18, 2009.

Axel Bauer | Fraunhofer Gesellschaft
Further information:
http://www.ilt.fraunhofer.de/eng/100031.html

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>