Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World record: 400 W femtosecond laser for ultra-precise materials processing

12.05.2009
Femtosecond lasers (fs-lasers) are the key to ultra-precision processing.

Whether in medicine, electronics, aerospace or solar technology, thin coatings can be removed, fiber-reinforced plastics drilled and ceramic components' surfaces structured using fs-lasers.


World record: 400 W femtosecond laser developed by the Fraunhofer ILT for ultra-precise materials processing. Picture source: Fraunhofer Institute for Laser Technology ILT, Aachen

Wider use of fs-lasers, however, is hampered by the average output which is currently limited to below 100 W on commercial systems. At the LASER World of Photonics 2009 in Munich the Fraunhofer Institute for Laser Technology ILT will show for the first time the currently most powerful ultra-short-pulse laser module with an output of over 400 watts and pulse durations of less than 1 ps.

Femtosecond (fs) lasers, i.e. lasers with pulse durations of less than one picosecond, have experienced a stormy development on the scientific front since their beginnings 35 years ago. The interaction of fs-laser radiation with material is characterized by the fact that the pulse duration is shorter than most interaction times between atoms or atoms and electrons. Thus, when material is processed, heat conduction, melting, evaporation and plasma formation only take place after the impact of the laser radiation. In contrast to longer nanosecond pulses or continuous wave (cw) lasers, no direct interaction of light and diffusing material takes place, which facilitates high-precision material removal. With fs-lasers it is therefore possible to achieve processing results which cannot be matched by any other method.

A major obstacle to the widespread use of present fs-lasers, however, is their average output power. Whereas cw-fiber and disk lasers nowadays reach an average output of a kilo-watt and more with diffraction-limited beam quality, the output power of fs-lasers is typically in the range of a single watt. 50-watt lasers are regarded as the high-end range for commercial lasers. Owing to their complex design, the price for such systems is a few hundred thousand euros. The high price and output-limited processing speed are therefore restricting the present potential of fs-lasers. Up to now they have not been widely embraced in production.

At the LASER World of Photonics 2009 the Fraunhofer ILT is unveiling the currently most powerful ultra-short-pulse laser module. This was developed in part under the LASERTRON (FKZ 13N8720) joint project with funding from the German Ministry of Education and Research (BMBF) under the FEMTONIK program. With an average output of more than 400 watts, it holds the world record for average output among lasers with pulse durations of less than one picosecond.

This was made possible by reinterpreting the InnoSlab technology which has been under development at the Fraun-hofer Institute for Laser Technology (ILT) for more than 10 years. This technology already forms the basis for numerous nano- and picosecond laser systems in industrial use. The extremely simple construction of the single-pass amplifier with four mirrors and one laser crystal permits an opto-mechanically and thermally robust and compact design.

In addition, a reduction and adaptation of the intensities arising is concept-inherent and makes it possible to reach pulse energies below one millijoule - which are relevant in particular for micro materials processing - without the need for complex chirped pulse amplification (CPA). This represents a further breakthrough for the simplification of fs-laser systems and the costs they entail, which is a key requirement for their widespread use in industrial practice.

The innovative laser from the Fraunhofer ILT is characterized by the fact that the oscillators with an output power of 1-2 watts can be amplified up to 400 watts by means of a single amplifier stage. At full output, a beam quality of M2

Further highlights include pulse durations below 700 fs and spectral bandwidths below 2 nm. The pulses are therefore distinctly shorter than on present ps-lasers and produce better results, for example in micro materials processing. Also, the bandwidth and wavelength unrestrictedly permit the use of the same optics as on typical ps and ns lasers. Special attachments for time compression (compressors), as frequently necessary on ultra-short-pulse lasers, are no longer required. The problems which can be caused by these attachments, such as pulse front / phase front tilt, therefore do not arise.

Given the bandwidth-limited spectrum and the high pulse peak output power, the laser radiation is very suitable for non-linear frequency conversion. Ongoing tasks include frequency doubling, compression of the pulse duration and production of high harmonics. Use in the scientific field will be made possible in future by increasing the pulse energy to the multi 10mJ range at several 100 watts of average output using additional CPA.

According to all the theoretical and experimental findings, the practical limits of the ultra-short-pulse laser have not yet been reached. The Fraunhofer ILT is therefore already working on scaling the innovative fs-laser to outputs of greater than 1000 watts. The results of the new technology will be presented to a broad specialist public at the joint Fraunhofer stand in Hall C2 at LASER 2009 in Munich from June 15 to 18, 2009.

Axel Bauer | Fraunhofer Gesellschaft
Further information:
http://www.ilt.fraunhofer.de/eng/100031.html

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>