Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL’s nanobiosensor technology gives new access to living cell’s molecular processes

28.04.2004


Researchers at the Department of Energy’s Oak Ridge National Laboratory have developed a nanoscale technology for investigating biomolecular processes in single living cells. The new technology enables researchers to monitor and study cellular signaling networks, including the first observation of programmed cell death in a single live cell.


This image shows a nanoprobe, with a tip 1,000 times finer than a human hair, penetrating a cell. The probe can enter, perform a measurement in situ and be withdrawn without destroying the cell. The nanobiosensor technology provides researchers who study cell systems at the molecular level a valuable tool for monitoring the health of a single cell.



The "nanobiosensor" allows scientists to physically probe inside a living cell without destroying it. As scientists adopt a systems approach to studying biomolecular processes, the nanobiosensor provides a valuable tool for intracellular studies that have applications ranging from medicine to national security to energy production.

ORNL Corporate Fellow and Life Sciences Division researcher Tuan Vo-Dinh leads a team of researchers who are developing the nanoscale technology. "This research illustrates the integrated ‘nano-bio-info’ approach to investigating and understanding these complex cell systems," Vo-Dinh said. "There is a need to explore uncharted territory inside a live cell and analyze the molecular processes. This minimally invasive nanotechnology opens the door to explore the inner world of single cells".


ORNL’s work was most recently published in the Journal of the American Chemical Society and has appeared in a feature article of the journal Nature. Members of Vo-Dinh’s research team include postdoctoral researchers Paul M. Kasili, Joon Myong Song and research staff biochemist Guy Griffin.

The group’s nanobiosensor is a tiny fiber-optic probe that has been drawn to a tip of only 40 nanometers (nm) across—a billionth of a meter and 1,000 times smaller than a human hair. The probe is small enough to be inserted into a cell.

Immobilized at the nanotip is a bioreceptor molecule, such as an antibody, DNA or enzyme that can bind to target molecules of interest inside the cell. Video microscopy experiments reveal the minimally invasive nature of the nanoprobe in that it can be inserted into a cell and withdrawn without destroying it.

Because the 40-nm diameter of the fiber-optic probe is much narrower than the 400-nm wavelength of light, only target molecules bound to the bioreceptors at the tip are exposed to and excited by the evanescent field of a laser signal.

"We detect only the molecules that we target, without all the other background ‘noise’ from the myriad other species inside the cell. Only nanoscale fiber-optics technology can provide this capability," said Vo-Dinh.

ORNL’s technology gives molecular biologists an important systems biology approach of studying complex systems through the nano-bio-info route. Conventional analytical methods—electron microscopy or introducing dyes, for example—have the disadvantage of being lethal to the cell.

"The information obtained from conventional measurements is an average of thousands or millions of cells," said Vo-Dinh. "When you destroy cells to study them, you can’t obtain the dynamic information from the whole live cell system. You get only pieces of information. Nanosensor technology provides a means to preserve a cell and study it over time within the entire cell system."

The ability to work with living cells opens a new path to obtaining basic information critical to understanding the cell’s molecular processes. Researchers have a new tool for understanding how toxic agents are transported into cells and how biological pathogens trigger biological responses in the cell.

Vo-Dinh’s team recently detected the biochemical components of a cell-signaling pathway, apoptosis. Apoptosis is a key process in an organism’s ability to prevent disease such as cancer. This programmed cell-death mechanism causes cells to self-destruct before they can multiply and introduce disease to the organism.

"When a cell in our body receives insults such as toxins or inflammation and is damaged, it kills itself. This is nature’s way to limit and stop propagation of many diseases such as cancer," said Vo-Dinh. "For the first time we’ve seen apoptosis occur within a single living cell."

Apoptosis triggers a host of tell-tale enzyme called caspases. Vo-Dinh’s team introduced a light-activated anti-cancer drug into cancer cells. They then inserted the fiberoptic nanoprobe with a biomarker specific for caspase-9 attached to its tip. The presence of caspase-9 caused cleavage of the biomarker from the tip of the nanobiosensor. Changes in the intensity of the biomarker’s fluorescence revealed that the light-activated anti-cancer drug had triggered the cell-death machinery.

"The nanobiosensor has many other applications for looking at how cells react when they are treated with a drug or invaded by a biological pathogen. This has important implications ranging from drug therapy development to national security, environmental protection and a better understanding of molecular biology at a systems level," said Vo-Dinh. "This area of research is truly at the nexus of nanotechnology, biology and information technology."

The research was supported by ORNL’s laboratory-directed research and development program and by the DOE Office of Biological and Environmental Research in the Office of Science. ORNL is managed by UT-Battelle for the Department of Energy.

Bill Cabage | ORNL
Further information:
http://www.ornl.gov/info/press_releases/get_press_release.cfm?ReleaseNumber=mr20040427-00

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>