Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New flat motor can drive shape shifters, movers and shakers

29.01.2003


Edge view of Penn State flat motor developed by Dr. Gary Koopmann, distinguished professor of mechanical engineering; Chen Weicheng, CAV laboratory manager; George Lesieutre, professor of aerospace engineering, and Eric Mockensturm, assistant professor of mechanical enigneering all at Penn State and Jeremy Frank, president, KCF Industries.
Credit: Jeremy Frank, KCF Technologies


Head-on view of Penn State flat motor developed by Dr. Gary Koopmann, distinguished professor of mechanical engineering; Chen Weicheng, CAV laboratory manager; George Lesieutre, professor of aerospace engineering, and Eric Mockensturm, assistant professor of mechanical enigneering all at Penn State and Jeremy Frank, president, KCF Industries.
Credit: Jeremy Frank, KCF Technologies


Penn State engineers have developed a low- cost, high-torque rotary motor, based on "smart" materials, that can be configured in a wide range of formats, including one as flat and thin as a CD case.

The inventors say that, in the flat format, the motor could be used to drive changes in the camber of airplane wings or fins, essentially shape-shifting the curvature of the wing or fin surface.

In other formats, the motor could work in tightly integrated spaces where other motors can’t fit. For example, the "smart" material motor could serve as the drive element in thinner, lighter, laptop computers or other compact, portable consumer products or in manufacturing equipment that processes things by moving or shaking them.



Dr. Gary Koopmann, distinguished professor of mechanical engineering and director of Penn State’s Center for Acoustics and Vibration (CAV), led the development team. He says the flat motor has a starting torque advantage over conventional electric motors since speed is not required for high torque output.

The prototype flat motor has reached a free speed of 760 revolutions per minute and a maximum torque of 0.4 Nm.

Components for the prototype cost less than $150 off-the-shelf. Koopmann estimates that an optimized version of the flat motor might cost as little as $10 to mass produce.

The device was patented recently by Penn State. The inventors are Koopmann; Dr. Weicheng, CAV laboratory manager; Dr. George Lesieutre, professor of aerospace engineering and CAV associate director; Dr. Jeremy Frank, president, KCF Technologies; and Dr. Eric Mockensturm, assistant professor of mechanical engineering.

The new motor works by translating the bending of a "smart" material into the turning of a shaft. The "smart" material the inventors use is PZT (lead zirconate titanate), an inexpensive, commonly available piezoelectric that elongates when an electric field is applied to it. By bonding PZT to both sides of a tiny, flexible, metallic strip, they create an "arm" that can bend to the left and right in response to an electric field.

Placing 12 of the "arms" star-fish-style around a central shaft, the inventors stimulate them simultaneously and they all bend in the same direction. A passive clamping system, either a ball and spring arrangement or a commercial one-way roller clutch, acts as a kind of turnstile that only allows the motion to ratchet along in one direction, translating the bending into rotation of the central shaft.

Koopmann explains that using passive clamping significantly improves the performance and lowers the cost of the flat motor versus inch-worm type designs, which also use the small oscillatory motions of smart materials but require precision machining.

The development of the new motor was supported by grants from the Defense Advanced Research Projects Agency. The motor has been described in "Optimization of a Resonant Bimorph Actuator Drive" published in the Proceedings of DETC 01, the ASME 2001 Design Engineering Technical conference held Sept. 9-12, 2001 in Pittsburgh, Pa.

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>