Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep Sea Technology Is Put To The Test In Campus Tank

22.11.2002


Photo A: Louis Whitcomb supervises underwater robotics research at Johns Hopkins, including a new lab that features a tank filled with nearly 43,000 gallons of water.
Photo by Jay Van Rensselaer


Photo B: Doctoral student James Kinsey prepares to test the navigation and control systems that guide the lab’s underwater robot.
Photo by Jay Van Rensselaer


Tethered Robotic Sub Helps Engineers Refine Computerized Navigation, Control Systems

In a new indoor tank filled with almost 43,000 gallons of water, Johns Hopkins engineers are developing and testing computer control systems to serve as the "brains" for some of the world’s leading deep sea robotic exploration vehicles. To promote advances in underwater robotics, the Whiting School of Engineering recently constructed the circular hydrodynamics tank, 14 feet deep and 25 feet in diameter, inside a large lab space within Maryland Hall.

In the tank, researchers are testing the JHU Remotely Operated Vehicle, a small underwater robot developed at the university. Its navigation and control systems, also developed at Johns Hopkins, have recently been adapted and enhanced for use in the much larger Jason II vehicle, a new deep-sea oceanographic research robot operated by the Woods Hole Oceanographic Institution. The Johns Hopkins navigation program also has been deployed aboard the Deep Submergence Vehicle Alvin, Woods Hole’s inhabited oceanographic submersible.



Future navigation and control techniques devised in the new test tank are expected to improve the operations of deep-sea robots such as Jason II and Isis, a similar vessel that Woods Hole is developing for the University of Southampton in the United Kingdom.

"Our research goal is to develop new technology to enable new oceanographic research," says Louis Whitcomb, associate professor in the Department of Mechanical Engineering, who is director of the new testing facility. "Moreover, we collaborate with other institutions like the National Deep Submergence Facility at Woods Hole Oceanographic Institution to deploy these new technologies for ocean science on vehicles such as Jason II and Alvin."

Deep sea robots like Jason II are relatively new but increasingly important tools for scientists who want to explore some of Earth’s most remote and hostile frontiers. Human scuba divers can descend safely only about 300 feet, or 100 meters. Yet the deepest parts of the ocean lie 11,000 meters below the surface. To explore greater depths, scientists in the 1960s began building small inhabited submersibles. Such vessels have been used to explore the R.M.S. Titanic’s wreckage. But because such vehicles must carry their own fuel and air supplies, explorers are limited to eight to 12 hours per dive.

To overcome these limitations, engineers in the last 15 years have begun building uninhabited robotic vehicles that remain tethered to a research ship on the surface. Long cables feed power and instructions to the submersible and retrieve images and other data. These vehicles usually are equipped with video cameras to allow researchers to see what the vehicle "sees" in real time. They often possess robotic arms to collect artifacts, rocks and biological samples.

"The deep ocean is a cold, dark, high-pressure, inhospitable environment, and this equipment must be able to operate reliably under these conditions," Whitcomb says. "Inhabited deep submersibles, such as the U.S. Deep Submergence Vehicle Alvin, remain the only way for humans to directly observe the benthic floor with their own eyes. Deep-diving submarines are ideal for many tasks, yet they have limited endurance. One advantage of an uninhabited submersible is that it can explore the deepest parts of the ocean 24 hours a day, seven days a week, under the remote control of science teams that are working around the clock aboard the mother ship."

Operating a robotic vehicle from a great distance poses certain challenges, however, and that’s where Whitcomb’s team comes in. "Our lab focuses on two key problems that occur in the design of remotely operated undersea vehicles: navigation and control," Whitcomb says. "One of the most difficult things about maneuvering an underwater vehicle is that you need to know where it is. What, precisely, is its position and orientation on our planet? To determine these things, we’ve developed a computer system that integrates signals from a dozen on-board sensors to compute the submersible’s position and velocity."

Based on this information, an operator on the surface can use a joystick to move the undersea robot in three dimensions. The control system developed by Whitcomb and his students also allows an operator to tell a computer precisely where the vehicle should be located; the software then automatically moves the vehicle to that point. At the new Johns Hopkins hydrodynamics lab, researchers are fine tuning this system by sending commands over a tether line to six electric thrusters mounted upon the test submersible.

At sea, researchers on the surface can use this same system to carefully control a larger underwater robot’s movements, instructing the vehicle to move in a precise grid pattern. This allows the sub to collect the images and sonar data needed to produce photographic and topographic maps of sections of the ocean’s floor that contain interesting geological, biological or archaeological features. Whitcomb says his computer system also can direct a submersible to hover just 6 to 12 inches above the ocean floor, close enough to collect samples without disturbing ecologically sensitive surfaces. "With this system," he says, "we can control a vehicle’s position to within a few centimeters and its heading to within a degree."

Whitcomb supervises underwater robotics research at Johns Hopkins as director of the Dynamical Systems and Control Laboratory. The JHU Remotely Operated Vehicle was designed and built by one of his doctoral students, David Smallwood. Another of Whitcomb’s doctoral students, James Kinsey, is refining the underwater navigation system at the new testing tank. Other Johns Hopkins marine and oceanographic researchers will have access to the new tank. Funds for construction of the tank and related research were provided by the National Science Foundation.

Office of News and Information
Johns Hopkins University
3003 N. Charles Street, Suite 100
Baltimore, Maryland 21218-3843
Phone: (410) 516-7160 | Fax (410) 516-5251

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu/news_info/news/audio-video/underwater.html
http://robotics.me.jhu.edu/dscl/
http://www.me.jhu.edu/

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>