Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technique Reveals Structure of Films With High Resolution

30.10.2002


Scientists have developed and tested a new imaging technique that reveals the atomic structure of thin films with unprecedented resolution. For the first time, the technique has shown very precisely how the atoms of the first layers of a film rearrange under the action of the substrate on which the film is grown. The results of the study are reported as the cover story of the October issue of Nature Materials.



Above: Electron density map of one of the layers of the gadolinium oxide film close to the gallium arsenide substrate (top) and a layer in the substrate (bottom), by using the COBRA imaging technique. A comparison of both maps shows that the gadolinium atoms (around the yellow-red peaks) rearrange so that the maps mimic each other



“This technique directly provides a very precise image of atomic positions within a film and at the interface between a film and a substrate,” says Ron Pindak, a physicist at the National Synchrotron Light Source (NSLS) at the U.S. Department of Energy’s Brookhaven National Laboratory and one of the authors of the study. “With the current growing interest in the study of nanomaterials, which are the size of a few atoms, this technique will probably be key in devising such materials and understanding their properties.”

Thin films are currently used in many technologies, including electronic chips, coatings, and magnetic recording heads. To improve the properties of these materials and create even thinner structures – such as smaller electronic chips – scientists are now trying to understand how the films interact with the substrate on which they are grown.


“When you build a film on a substrate, the positions of the atoms of the film are slightly shifted, and some of these shifts can be very small,” says Roy Clarke, a physicist at the University of Michigan in Ann Arbor and another author of the study. “So it is important to be able to explain how these films behave at the atomic level.”

By building upon traditional x-ray diffraction, the newly devised technique provides such information. In this technique, x-rays are projected onto the film and the substrate pattern, which is then used to determine the positions of the atoms inside the film. The diffraction pattern of thin films is composed of ridge-like features called “Bragg rods,” hence the name of the technique: coherent Bragg rod analysis (COBRA).

The COBRA technique determines two key properties of the diffracted x-ray waves: their intensity and their phase, which describes the shift in position between the incident and diffracted x-ray waves. Though the amplitude is easily determined from the diffraction pattern, the phase is usually more difficult to determine, which is just what COBRA does.

“Key to the COBRA technique is a new approach to determining the phase of the diffracted x-ray waves,” says Yizhak Yacoby, physicist at the Hebrew University in Jerusalem and lead author of the study. “Unlike traditional x-ray diffraction techniques, COBRA does not rely on a priori guesses about the structure of the film and the substrate, and we do not need to prepare the sample in a special way – as with a transmission electron microscope.”

Yacoby, who started developing the technique four years ago, first applied it to known structures by using x-rays produced at the NSLS at Brookhaven, which allowed him to refine the technique. In their recent study, Yacoby and his collaborators applied the technique to a film made of gadolinium oxide grown on a gallium arsenide substrate using brighter x-rays at the Advanced Photon Source (APS) at Argonne National Laboratory in Illinois. Key to the successful data collection were two APS beam lines that Clarke and Edward Stern, a physicist at the University of Washington in Seattle, perfected for the past five years.

The researchers made unexpected observations. They noticed that two thirds of the gadolinium atoms in the first few layers of the film adjust to match the positions of the atoms in the substrate. The researchers also discovered that the structure of the first layers of the film mimics very closely the substrate’s structure, while the atoms in the layers farther away from the substrate are arranged more like those in the bulk form of gadolinium oxide. The layer stacking of the film also appeared to mimic very closely the substrate’s structure.

The scientists now intend to investigate the properties of various other films. Yacoby, who has already submitted patents for the COBRA technique, is confident that it will have many applications in the design of electronic devices based on thin films, the self-assembly of layers made of metal oxides used in catalysis, and the study of films made of large organic molecules, such as proteins.

This work was funded by the U.S. Department of Energy, which supports basic research in a variety of scientific fields.

For more information, contact:
Karen McNulty Walsh, 631 344-8350, or
Mona S. Rowe, 631 344-5056
Writer: Patrice Pages

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov/
http://www.bnl.gov/bnlweb/pubaf/pr/2002/bnlpr102902.htm

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>