Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

`Artificial vision` for recycling copper

09.08.2002


The technological centre Robotiker from Zamudio (Basque Country) has developed a system of artificial sight to separate metals that come with copper, in order to obtain high purity copper.


It’s in this machine where they recover copper from old cables



To recover copper from old cables it is not something new. However, the recycled copper is not pure, because it is mixed with other metals, such as lead, aluminium and tin. It is quite complicated to separate copper from those components by using mechanical, physical and other methods. Nevertheless it is easy to distinguish impurities through the eyesight.

The recycling of cables has been promoted by the need to change conventional telephone lines. The price of the material obtained from the recycling of electrical and telephone cables depends on the level of purity of the copper. Therefore, the fact of having lead, aluminium and tin along with copper determines the use and, hence, the price of copper.


With the system developed by Robotiker, after several processes the copper cable is divided into small pieces, and that divided copper has a purity of 99 %. The size of those pieces is variable, but usually it has 8-15 mm long, 3-1 mm wide and 1 mm high. When those pieces of the cable go along a belt, a camera with artificial sight can see them and differ them by the colour. If it realises it is not copper, it will reject it.

When copper has a purity of 99 %, it is used for plumbing and heating-systems. However, if it is going to be recycled for electrical use, its purity must be at least of 99.9 %. Thanks to the high purity obtained at the end of this new process, copper can be used for electrolytic processes, that is, for batteries. That was the aim of the companies that have developed the project together with Robotiker; more precisely the aim of Laining Industrial and two companies from the recycling sector Indumental Recycling and Botrade.

Thanks to this leading technique of artificial sight, materials can be separated by colour and shape. The result of this project (reduction of impurities from 10 to 1 with 1,000 Kg/hour flows) allows to expand in future such systems to other recycling processes.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/index.asp?Gelaxka=1&hizk=I

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>