Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infra red spotlights crystal growth

19.01.2009
The creation of a reproducible crystallisation process is a fundamental challenge to drug manufacturers, but a technique which provides real time detailed analyses of chemical processes could provide an answer.

Developed by engineers at the University of Leeds, the technique uses infra-red spectroscopy to monitor supersaturation – the levels of chemical saturation in a liquid - required for crystallisation to begin to occur.

Most drug compounds are crystalline, manufactured in batch process systems. Small changes in crystallisation process conditions, such as temperature and cooling rates, can significantly affect the structure of the resulting crystals, something which affects both their physical properties and their performance.

“For example, when you cool water the molecules in the water have to get into the right position to begin crystallising into ice crystals and the temperature can have a bearing on the size of ice crystals that are formed,” says Dr Tariq Mahmud from the University’s School of Process, Environmental and Materials Engineering. “It’s similar with chemicals, although there’s a wider range of parameters to take into account.”

The new technique uses a probe attached to an infra-red spectrometer to measure the concentration of a specific chemical in solution. In laboratory experiments, this technique was used on the batch cooling crystallisation of chemical L-Glutamic acid (LGA). The information gained from the infra-red spectrometer is coupled with detailed statistical – or chemometric - data to provide a more detailed analysis of the crystallisation process than has been possible with other infra-red spectrometry techniques.

Dr Mahmud explains: “Using a chemometric approach enables us to take many more parameters into account, which makes it a more reliable predictor of the optimum concentration levels required to produce a particular crystal structure.”

The latest technique was developed by engineers at Leeds in collaboration with researchers at Newcastle and Heriot-Watt universities as part of the Chemicals Behaving Badly programme which is funded by the Engineering and Physical Sciences Research Council, along with ten industrial partners.

It is the latest in a raft of new “Quality by Design” (QBD) tools being developed for the pharmaceutical manufacturing sector as part of a drive for increased understanding of drug processing fundamentals. “By developing tools to increase knowledge about, and monitor, batch process systems, we’re providing practical solutions to problems faced by industry on a daily basis,” says Dr Mahmud. “This sort of technological approach to manufacture will help reduce waste – and therefore costs - and could have a significant role to play in increasing the competitiveness of the pharmaceutical sector.”

Clare Elsley | alfa
Further information:
http://www.leeds.ac.uk
http://www.leeds.ac.uk/media/press_releases/current09/infrared.htm

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>