Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW-Madison physicists build basic quantum computing circuit

01.03.2010
Exerting delicate control over a pair of atoms within a mere seven-millionths-of-a-second window of opportunity, physicists at the University of Wisconsin-Madison created an atomic circuit that may help quantum computing become a reality.

Quantum computing represents a new paradigm in information processing that may complement classical computers. Much of the dizzying rate of increase in traditional computing power has come as transistors shrink and pack more tightly onto chips — a trend that cannot continue indefinitely.

"At some point in time you get to the limit where a single transistor that makes up an electronic circuit is one atom, and then you can no longer predict how the transistor will work with classical methods," explains UW-Madison physics professor Mark Saffman. "You have to use the physics that describes atoms — quantum mechanics."

At that point, he says, "you open up completely new possibilities for processing information. There are certain calculational problems… that can be solved exponentially faster on a quantum computer than on any foreseeable classical computer."

With fellow physics professor Thad Walker, Saffman successfully used neutral atoms to create what is known as a controlled-NOT (CNOT) gate, a basic type of circuit that will be an essential element of any quantum computer. As described in the Jan. 8 issue of the journal Physical Review Letters, the work is the first demonstration of a quantum gate between two uncharged atoms.

The use of neutral atoms rather than charged ions or other materials distinguishes the achievement from previous work. "The current gold standard in experimental quantum computing has been set by trapped ions… People can run small programs now with up to eight ions in traps," says Saffman.

However, to be useful for computing applications, systems must contain enough quantum bits, or qubits, to be capable of running long programs and handling more complex calculations. An ion-based system presents challenges for scaling up because ions are highly interactive with each other and their environment, making them difficult to control.

"Neutral atoms have the advantage that in their ground state they don't talk to each other, so you can put more of them in a small region without having them interact with each other and cause problems," Saffman says. "This is a step forward toward creating larger systems."

The team used a combination of lasers, extreme cold (a fraction of a degree above absolute zero), and a powerful vacuum to immobilize two rubidium atoms within "optical traps." They used another laser to excite the atoms to a high-energy state to create the CNOT quantum gate between the two atoms, also achieving a property called entanglement in which the states of the two atoms are linked such that measuring one provides information about the other.

Writing in the same journal issue, another team also entangled neutral atoms but without the CNOT gate. Creating the gate is advantageous because it allows more control over the states of the atoms, Saffman says, as well as demonstrating a fundamental aspect of an eventual quantum computer.

The Wisconsin group is now working toward arrays of up to 50 atoms to test the feasibility of scaling up their methods. They are also looking for ways to link qubits stored in atoms with qubits stored in light with an eye toward future communication applications, such as "quantum internets."

This work was funded by grants from the National Science Foundation, the Army Research Office and the Intelligence Advanced Research Projects Agency.

— Jill Sakai, 608-262-9772, jasakai@wisc.edu

Mark Saffman | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>