Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An Unexpected Clue to Thermopower Efficiency

29.07.2011
Berkeley Lab scientists find that uneven temperature can lead to electronic whirlpools and sideways magnetic fields

Berkeley Lab scientists and their colleagues have discovered a new relation among electric and magnetic fields and differences in temperature, which may lead to more efficient thermoelectric devices that convert heat into electricity or electricity into heat.


An n-type semiconductor on top of a p-type semiconductor creates a vertical electric field (E, green arrow), while diffusion creates a depletion layer near the junction (orange), where the electric field is strongest. Heating one end of the device creates a heat gradient at right angles to the electric field (del T, red arrow). Electrons and holes moving in these fields are forced into loops of current, and a magnetic field is generated “sideways” (B, blue arrow), at right angles to both electric and thermal fields.

“In the search for new sources of energy, thermopower – the ability to convert temperature differences directly into electricity without wasteful intervening steps – is tremendously promising,” says Junqiao Wu of Berkeley Lab’s Materials Sciences Division (MSD), who led the research team. Wu is also a professor of materials science and engineering at the University of California at Berkeley. “But the new effect we’ve discovered has been overlooked by the thermopower community, and can greatly affect the efficiency of thermopower and other devices.”

Wu and his colleagues found that temperature gradients in semiconductors, when one side of the device is hotter than the opposite side, can produce electronic vortices – whirlpools of electric current – and can, at the same time, create magnetic fields at right angles to both the plane of the swirling electric currents and the direction of the heat gradient. The researchers report their results in Physical Review B.

Wu says, “There are four well-known effects that relate thermal, electric, and magnetic fields” – for example, the familiar Hall effect, which describes the voltage difference across an electric conductor in a perpendicular magnetic field – “but in all these effects the magnetic field is an input, not an outcome. We asked, ‘Why not use the electric field and the heat gradient as inputs and try to generate a magnetic field?’”

To test the possibilities, the researchers modeled a practical device made of two layers of silicon: a thin, negatively doped layer (N-type) with an excess of electrons and a thicker, positively doped layer (P-type) with an excess of holes, which are electron absences that behave as positively charged particles.

At the junction where the oppositely doped silicon layers meet, a third kind of layer called a P-N junction forms, not physical but electronic: electrons from the N-type layer diffuse across the physical boundary into the P-type layer while holes move in the opposite direction, forming a depletion layer where charges are “dried out”.

Given the high density of mobile electrons at the surface of the N-type layer and the high density of mobile holes at the surface of the P-type layer, but few mobile charges in the depletion layer, the electric field is strongest near the junction. This deep layer has profound effects, when a heat gradient is applied to the joined silicon layers.

Wake up and smell the champagne

“There are three ways charges can move – three kinds of currents,” says Wu. “One is the diffusion current, in which particles move from denser areas to less dense areas. This has nothing to do with charge. Think of a bottle of champagne. I pop the cork, and a little while later you can smell the champagne, because the molecules diffuse from their dense concentration in the bottle into the air.”

The second kind of current is called drift current. “If there’s a draft in the room moving toward you, you may smell the champagne a little earlier, or if it’s moving away from you, a little later,” Wu explains. “In an electronic device, a drift current is caused by the voltage bias, the electric field.”

Says Wu, “So in an electronic device we have diffusion current away from the dense charge areas, and drift current due to the electric field, and now we add a third, the thermoelectric current, which is another form of drift current in which charge carriers move from the hotter end of the device to the cooler end.”

The results would be uninteresting if all the currents were pointing in the same direction, or in opposite directions, but they’re not. The electric field sets up a drift current from the negatively charged top layer toward the positively charged bottom layer of the device – moving against the diffusion currents of the charge carriers. Meanwhile the heat gradient sets up a drift current at right angles to the electric field.

“In these conflicting perpendicular forces, electrons and holes cannot maintain straight motion but are sucked into vortices,” Wu says.

Instead of a single vertical vortex in the device, vortices form in each layer and are separated by the depletion layer. In the N-type layer, the widely separated electrons near the depletion layer move with the temperature gradient, from hot to cold, but move in the opposite direction near the surface, where the electrons are bunched closer together. The vortex formed by holes in the N-type layer is nearly a mirror image of the electron vortex.

The unusual result is that merely by applying heat to one end of a simple silicon device, the researchers can generate a magnetic field perpendicular to the twin vortices – a magnetic field that emerges at right angles to the plane of the two silicon layers.

“The immediate application is not that we can make a magnetic field, which is relatively weak, but the realization that the efficiency of many semiconductor devices, including commercial products, could be made more efficient if we do it right,” Wu says. “For example, designing them to make sure that their electric fields, and inhomogeneities in composition or doping, are aligned with their heat gradients would avoid these energy-wasting current vortices.”

Wu’s fascination with the new effect he and his teammates discovered doesn’t stop there, however. “My interest isn’t just in making more efficient electronics but in making good things out of this. The first step is to confirm with experiment what we’ve discovered through modeling. After that, a whole new program of research opens up.”

Wu explains that the remarkable electronic and magnetic effects caused by temperature differences in the current model may well be duplicated by other kinds of inhomogeneous excitation – for example, by the way light falls on a solar cell. “Different intensities or different wavelengths falling in different areas of a photovoltaic device will produce the same kinds of electronic vortices and could affect solar cell efficiency. Understanding this effect may be a good path to better efficiency in electronics, thermal power, and solar energy as well.”

“Electrothermally driven current vortices in inhomogeneous bipolar semiconductors,” by Deyi Fu, Alejandro Levander, Rong Zhang, Joel Ager, and Junqiao Wu, appears in Physical Review B and is available online at http://prb.aps.org/abstract/PRB/v84/i4/e045205. Deyi Fu is with UC Berkeley and Nanjing University; Levander and Wu are with UC Berkeley and Berkeley Lab’s MSD; Zhang is with Nanjing University, and Ager is with MSD. For further information, see Physical Review Focus at http://focus.aps.org/story/v28/st2. This work was partly supported by the National Science Foundation.

Paul Preuss | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>