Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

System Tricks the Brain to Induce Realistic Spaceflight Effects

26.08.2010
What does it feel like to return to Earth after a long stay in space? Until now, it has been difficult during astronaut training to realistically simulate the dizzying effects the human body can experience.

Dr. Steven Moore leads a research group that has developed a Galvanic vestibular stimulation (GVS) system that safely induces the sensory and mobility disturbances commonly experienced by astronauts after returning to Earth’s gravity, making it an excellent operational training tool.

When returning to gravity, these disturbances could affect an astronaut’s vision and neurological function, impacting the ability to land a spacecraft. Once on the ground, astronauts often have trouble keeping their balance and walking.

“You can train for spaceflight tasks under normal conditions on Earth, but that will not give you an indication of what an astronaut will feel like,” said Moore, a member of the National Space Biomedical Research Institute’s (NSBRI) Sensorimotor Adaptation Team. “The GVS system will make mission simulations more realistic. This will be quite useful for astronaut training, especially for astronauts that have not flown before.”

The system developed by Moore, who is an associate professor of neurology at Mount Sinai School of Medicine in New York, uses electrodes placed behind the ear to deliver small amounts of electricity to the vestibular nerve, which then sends the signals to the brain, resulting in sensorimotor disturbances.

“We know that GVS is a good model of how microgravity affects astronauts,” Moore said. “What we didn’t know is how good of an operational analog GVS is for the effects of spaceflight. We now have a validated, ground-based analog for the effects of spaceflight on neurological function that is not just posture, balance and eye movement.”

The concept of tricking the brain with Galvanic vestibular stimulation has been around for a long time. However, the system developed by Moore has several unique aspects in addition to simulating spaceflight’s effects. First, it uses large electrodes to deliver the stimulus, which have proven to be more comfortable than smaller electrodes. Second, the module, which can deliver up to a 5 milliamp current, is portable and about the size of a box of tissues, making it easy for people to use it while walking.

In order to determine the viability of using GVS as an analog, Moore tested 12 subjects in the Vertical Motion Simulator at NASA Ames Research Center at Moffett Field, Calif. Each subject flew 16 simulated shuttle landings, with the pilots experiencing the GVS analog during eight of the simulations. The subjects included a veteran shuttle commander, NASA test pilots and U.S. Air Force pilots. The results were compared to data collected from more than 100 shuttle landings.

According to Moore, one out of five shuttle landings have been outside the optimal performance range, such as touchdown speed and sink rate. He said the pilots using GVS during landing simulations experienced sensorimotor disturbances similar to the shuttle pilots.

For example, GVS generated a significant increase in touchdown speed consistent with that observed in actual shuttle landings. “Without GVS, they were right on the target – around 204 knots,” Moore said. “With GVS, the average speed was pushed up to about 210 knots, which is at the upper limit of the target range.”

The study subjects also experienced GVS-induced problems during a routine landing approach braking maneuver that required the pilots to bring the craft from a 20-degree glideslope angle to a 1.5-degree angle. This is a point during actual shuttle landing approaches at which pilots experienced sensorimotor issues and increased gravitational forces from acceleration.

“The GVS stimulation of the nerves is making the simulator pilots think the spacecraft is moving around. We are happy with that result,” he said. “GVS induced similar decrements in simulator landings to those during actual shuttle landings.”

Even though the research used shuttle landings as the test bed, Moore said the GVS is a viable analog for other space vehicles and operations, such as landing on Mars.

In addition to testing the system’s viability as a spaceflight analog, the researchers tested 60 subjects to determine their tolerance to the GVS stimulation during 15- to 20-minute sessions. More than 90 percent of those tested had a high tolerance, and the results showed that GVS stimulation impairs cognitive abilities related to spatial processing. The next step for the researchers is to study whether people have the ability to adapt to the use of GVS over multiple sessions.

The GVS system also has potential use in training aircraft pilots and in preparing people with vestibular disorders for the effects following surgery.

NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration spaceflight. The Institute’s science, technology and education projects take place at more than 60 institutions across the United States.

Brad Thomas | Newswise Science News
Further information:
http://www.bcm.edu
http://www.nsbri.org/newsflash/indivArticle.asp?id=454&articleID=133

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>