Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

System Tricks the Brain to Induce Realistic Spaceflight Effects

26.08.2010
What does it feel like to return to Earth after a long stay in space? Until now, it has been difficult during astronaut training to realistically simulate the dizzying effects the human body can experience.

Dr. Steven Moore leads a research group that has developed a Galvanic vestibular stimulation (GVS) system that safely induces the sensory and mobility disturbances commonly experienced by astronauts after returning to Earth’s gravity, making it an excellent operational training tool.

When returning to gravity, these disturbances could affect an astronaut’s vision and neurological function, impacting the ability to land a spacecraft. Once on the ground, astronauts often have trouble keeping their balance and walking.

“You can train for spaceflight tasks under normal conditions on Earth, but that will not give you an indication of what an astronaut will feel like,” said Moore, a member of the National Space Biomedical Research Institute’s (NSBRI) Sensorimotor Adaptation Team. “The GVS system will make mission simulations more realistic. This will be quite useful for astronaut training, especially for astronauts that have not flown before.”

The system developed by Moore, who is an associate professor of neurology at Mount Sinai School of Medicine in New York, uses electrodes placed behind the ear to deliver small amounts of electricity to the vestibular nerve, which then sends the signals to the brain, resulting in sensorimotor disturbances.

“We know that GVS is a good model of how microgravity affects astronauts,” Moore said. “What we didn’t know is how good of an operational analog GVS is for the effects of spaceflight. We now have a validated, ground-based analog for the effects of spaceflight on neurological function that is not just posture, balance and eye movement.”

The concept of tricking the brain with Galvanic vestibular stimulation has been around for a long time. However, the system developed by Moore has several unique aspects in addition to simulating spaceflight’s effects. First, it uses large electrodes to deliver the stimulus, which have proven to be more comfortable than smaller electrodes. Second, the module, which can deliver up to a 5 milliamp current, is portable and about the size of a box of tissues, making it easy for people to use it while walking.

In order to determine the viability of using GVS as an analog, Moore tested 12 subjects in the Vertical Motion Simulator at NASA Ames Research Center at Moffett Field, Calif. Each subject flew 16 simulated shuttle landings, with the pilots experiencing the GVS analog during eight of the simulations. The subjects included a veteran shuttle commander, NASA test pilots and U.S. Air Force pilots. The results were compared to data collected from more than 100 shuttle landings.

According to Moore, one out of five shuttle landings have been outside the optimal performance range, such as touchdown speed and sink rate. He said the pilots using GVS during landing simulations experienced sensorimotor disturbances similar to the shuttle pilots.

For example, GVS generated a significant increase in touchdown speed consistent with that observed in actual shuttle landings. “Without GVS, they were right on the target – around 204 knots,” Moore said. “With GVS, the average speed was pushed up to about 210 knots, which is at the upper limit of the target range.”

The study subjects also experienced GVS-induced problems during a routine landing approach braking maneuver that required the pilots to bring the craft from a 20-degree glideslope angle to a 1.5-degree angle. This is a point during actual shuttle landing approaches at which pilots experienced sensorimotor issues and increased gravitational forces from acceleration.

“The GVS stimulation of the nerves is making the simulator pilots think the spacecraft is moving around. We are happy with that result,” he said. “GVS induced similar decrements in simulator landings to those during actual shuttle landings.”

Even though the research used shuttle landings as the test bed, Moore said the GVS is a viable analog for other space vehicles and operations, such as landing on Mars.

In addition to testing the system’s viability as a spaceflight analog, the researchers tested 60 subjects to determine their tolerance to the GVS stimulation during 15- to 20-minute sessions. More than 90 percent of those tested had a high tolerance, and the results showed that GVS stimulation impairs cognitive abilities related to spatial processing. The next step for the researchers is to study whether people have the ability to adapt to the use of GVS over multiple sessions.

The GVS system also has potential use in training aircraft pilots and in preparing people with vestibular disorders for the effects following surgery.

NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration spaceflight. The Institute’s science, technology and education projects take place at more than 60 institutions across the United States.

Brad Thomas | Newswise Science News
Further information:
http://www.bcm.edu
http://www.nsbri.org/newsflash/indivArticle.asp?id=454&articleID=133

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>