Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

System Tricks the Brain to Induce Realistic Spaceflight Effects

26.08.2010
What does it feel like to return to Earth after a long stay in space? Until now, it has been difficult during astronaut training to realistically simulate the dizzying effects the human body can experience.

Dr. Steven Moore leads a research group that has developed a Galvanic vestibular stimulation (GVS) system that safely induces the sensory and mobility disturbances commonly experienced by astronauts after returning to Earth’s gravity, making it an excellent operational training tool.

When returning to gravity, these disturbances could affect an astronaut’s vision and neurological function, impacting the ability to land a spacecraft. Once on the ground, astronauts often have trouble keeping their balance and walking.

“You can train for spaceflight tasks under normal conditions on Earth, but that will not give you an indication of what an astronaut will feel like,” said Moore, a member of the National Space Biomedical Research Institute’s (NSBRI) Sensorimotor Adaptation Team. “The GVS system will make mission simulations more realistic. This will be quite useful for astronaut training, especially for astronauts that have not flown before.”

The system developed by Moore, who is an associate professor of neurology at Mount Sinai School of Medicine in New York, uses electrodes placed behind the ear to deliver small amounts of electricity to the vestibular nerve, which then sends the signals to the brain, resulting in sensorimotor disturbances.

“We know that GVS is a good model of how microgravity affects astronauts,” Moore said. “What we didn’t know is how good of an operational analog GVS is for the effects of spaceflight. We now have a validated, ground-based analog for the effects of spaceflight on neurological function that is not just posture, balance and eye movement.”

The concept of tricking the brain with Galvanic vestibular stimulation has been around for a long time. However, the system developed by Moore has several unique aspects in addition to simulating spaceflight’s effects. First, it uses large electrodes to deliver the stimulus, which have proven to be more comfortable than smaller electrodes. Second, the module, which can deliver up to a 5 milliamp current, is portable and about the size of a box of tissues, making it easy for people to use it while walking.

In order to determine the viability of using GVS as an analog, Moore tested 12 subjects in the Vertical Motion Simulator at NASA Ames Research Center at Moffett Field, Calif. Each subject flew 16 simulated shuttle landings, with the pilots experiencing the GVS analog during eight of the simulations. The subjects included a veteran shuttle commander, NASA test pilots and U.S. Air Force pilots. The results were compared to data collected from more than 100 shuttle landings.

According to Moore, one out of five shuttle landings have been outside the optimal performance range, such as touchdown speed and sink rate. He said the pilots using GVS during landing simulations experienced sensorimotor disturbances similar to the shuttle pilots.

For example, GVS generated a significant increase in touchdown speed consistent with that observed in actual shuttle landings. “Without GVS, they were right on the target – around 204 knots,” Moore said. “With GVS, the average speed was pushed up to about 210 knots, which is at the upper limit of the target range.”

The study subjects also experienced GVS-induced problems during a routine landing approach braking maneuver that required the pilots to bring the craft from a 20-degree glideslope angle to a 1.5-degree angle. This is a point during actual shuttle landing approaches at which pilots experienced sensorimotor issues and increased gravitational forces from acceleration.

“The GVS stimulation of the nerves is making the simulator pilots think the spacecraft is moving around. We are happy with that result,” he said. “GVS induced similar decrements in simulator landings to those during actual shuttle landings.”

Even though the research used shuttle landings as the test bed, Moore said the GVS is a viable analog for other space vehicles and operations, such as landing on Mars.

In addition to testing the system’s viability as a spaceflight analog, the researchers tested 60 subjects to determine their tolerance to the GVS stimulation during 15- to 20-minute sessions. More than 90 percent of those tested had a high tolerance, and the results showed that GVS stimulation impairs cognitive abilities related to spatial processing. The next step for the researchers is to study whether people have the ability to adapt to the use of GVS over multiple sessions.

The GVS system also has potential use in training aircraft pilots and in preparing people with vestibular disorders for the effects following surgery.

NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration spaceflight. The Institute’s science, technology and education projects take place at more than 60 institutions across the United States.

Brad Thomas | Newswise Science News
Further information:
http://www.bcm.edu
http://www.nsbri.org/newsflash/indivArticle.asp?id=454&articleID=133

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>