Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

System Tricks the Brain to Induce Realistic Spaceflight Effects

26.08.2010
What does it feel like to return to Earth after a long stay in space? Until now, it has been difficult during astronaut training to realistically simulate the dizzying effects the human body can experience.

Dr. Steven Moore leads a research group that has developed a Galvanic vestibular stimulation (GVS) system that safely induces the sensory and mobility disturbances commonly experienced by astronauts after returning to Earth’s gravity, making it an excellent operational training tool.

When returning to gravity, these disturbances could affect an astronaut’s vision and neurological function, impacting the ability to land a spacecraft. Once on the ground, astronauts often have trouble keeping their balance and walking.

“You can train for spaceflight tasks under normal conditions on Earth, but that will not give you an indication of what an astronaut will feel like,” said Moore, a member of the National Space Biomedical Research Institute’s (NSBRI) Sensorimotor Adaptation Team. “The GVS system will make mission simulations more realistic. This will be quite useful for astronaut training, especially for astronauts that have not flown before.”

The system developed by Moore, who is an associate professor of neurology at Mount Sinai School of Medicine in New York, uses electrodes placed behind the ear to deliver small amounts of electricity to the vestibular nerve, which then sends the signals to the brain, resulting in sensorimotor disturbances.

“We know that GVS is a good model of how microgravity affects astronauts,” Moore said. “What we didn’t know is how good of an operational analog GVS is for the effects of spaceflight. We now have a validated, ground-based analog for the effects of spaceflight on neurological function that is not just posture, balance and eye movement.”

The concept of tricking the brain with Galvanic vestibular stimulation has been around for a long time. However, the system developed by Moore has several unique aspects in addition to simulating spaceflight’s effects. First, it uses large electrodes to deliver the stimulus, which have proven to be more comfortable than smaller electrodes. Second, the module, which can deliver up to a 5 milliamp current, is portable and about the size of a box of tissues, making it easy for people to use it while walking.

In order to determine the viability of using GVS as an analog, Moore tested 12 subjects in the Vertical Motion Simulator at NASA Ames Research Center at Moffett Field, Calif. Each subject flew 16 simulated shuttle landings, with the pilots experiencing the GVS analog during eight of the simulations. The subjects included a veteran shuttle commander, NASA test pilots and U.S. Air Force pilots. The results were compared to data collected from more than 100 shuttle landings.

According to Moore, one out of five shuttle landings have been outside the optimal performance range, such as touchdown speed and sink rate. He said the pilots using GVS during landing simulations experienced sensorimotor disturbances similar to the shuttle pilots.

For example, GVS generated a significant increase in touchdown speed consistent with that observed in actual shuttle landings. “Without GVS, they were right on the target – around 204 knots,” Moore said. “With GVS, the average speed was pushed up to about 210 knots, which is at the upper limit of the target range.”

The study subjects also experienced GVS-induced problems during a routine landing approach braking maneuver that required the pilots to bring the craft from a 20-degree glideslope angle to a 1.5-degree angle. This is a point during actual shuttle landing approaches at which pilots experienced sensorimotor issues and increased gravitational forces from acceleration.

“The GVS stimulation of the nerves is making the simulator pilots think the spacecraft is moving around. We are happy with that result,” he said. “GVS induced similar decrements in simulator landings to those during actual shuttle landings.”

Even though the research used shuttle landings as the test bed, Moore said the GVS is a viable analog for other space vehicles and operations, such as landing on Mars.

In addition to testing the system’s viability as a spaceflight analog, the researchers tested 60 subjects to determine their tolerance to the GVS stimulation during 15- to 20-minute sessions. More than 90 percent of those tested had a high tolerance, and the results showed that GVS stimulation impairs cognitive abilities related to spatial processing. The next step for the researchers is to study whether people have the ability to adapt to the use of GVS over multiple sessions.

The GVS system also has potential use in training aircraft pilots and in preparing people with vestibular disorders for the effects following surgery.

NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration spaceflight. The Institute’s science, technology and education projects take place at more than 60 institutions across the United States.

Brad Thomas | Newswise Science News
Further information:
http://www.bcm.edu
http://www.nsbri.org/newsflash/indivArticle.asp?id=454&articleID=133

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>