Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stellar Astronomers Answer Question Posed by Citizen Scientists: ‘What Are Yellowballs?’

29.01.2015

Some four years ago, a citizen scientist helping the Milky Way Project study Spitzer Space Telescope images for the tell-tale bubble patterns of star formation noticed something else.

“Any ideas what these bright yellow fuzzy objects are?” the volunteer wrote on a project message board.


Image courtesy of NASA/JPL-Caltech.

Citizen scientists working with the Milky Way Project noticed and tagged the "yellowballs" in the middle of this image from the Spitzer Space Telescope.

Well, that sparked some discussion among the professional astronomers on the Milky Way Project and eventually led to a study of the compact objects now known as “yellowballs.” A paper just published by The Astrophysical Journal (“The Milky Way Project: What are Yellowballs?”) answers some questions about the 900 yellowballs tagged by citizen scientists.

Charles Kerton, an Iowa State University associate professor of physics and astronomy and a member of the Milky Way Project science team, is first author of the paper. Co-authors are Grace Wolf-Chase of the Adler Planetarium in Chicago and the University of Chicago; Kim Arvidsson, formerly an Iowa State doctoral student and now of Schreiner University in Kerrville, Texas; and Chris Lintott and Robert Simpson of the University of Oxford in the United Kingdom.

“In this paper, through a combination of catalog cross-matching and infrared color analysis, we show that yellowballs are a mix of compact star-forming regions,” the astronomers wrote.

And, they wrote, the project demonstrates “the serendipitous nature of citizen science efforts” because Milky Way Project volunteers “went beyond their assigned tasks and started tagging and discussing” the yellowballs.

The Milky Way Project is part of the Zooniverse, a collection of Internet-based science projects that ask for the public’s help looking through images and other data.

The Milky Way Project asks people to study tens of thousands of Spitzer’s infrared images. People are asked to circle and classify various objects, including bubbles of gas and dust blown by the radiation and charged particles from bright young stars.

To date, citizen scientists have made nearly 1.5 million classifications for the project.

Kerton said all of that classifying is helping astronomers study and map star formation within the galaxy.

But the project took a little detour when citizen scientists noticed yellow objects along the rims of some bubble formations. (It should be noted the yellowballs found in Spitzer’s infrared images aren’t really yellow. When the images are made, various colors are assigned to represent different wavelengths of infrared light. The yellow color on the images highlights where infrared emission from molecules (colored green) and from hot dust (colored red) completely overlap.)

The astronomers began studying those yellowballs by cross-matching them against existing catalogs of space objects. They also studied the luminosity and physical sizes of 138 of the yellowballs.

Kerton said the researchers found most of the yellowballs were located in regions of the galaxy containing dense gas. They also found that yellowball luminosity was consistent with the luminosity expected for a collection of newly formed massive stars.

They’ve concluded there’s an early “yellowball stage” in the formation of stars 10 to 40 times as massive as our sun. The yellowballs are considered very young versions of the bubble formations.

“All massive stars probably go through this yellowball stage,” Kerton said. “The most massive stars go through this stage very early and quickly. Less massive stars go through this stage more slowly.”

The astronomers also wrote that further studies of yellowballs will improve our understanding of how regions of massive star formation grow from early compact stages to more evolved and bubble-like structures.

But those findings aren’t the only highlight of this particular study, Kerton said.

“The fun thing about this study is the involvement of the citizen scientists,” he said. “This is a nice example of people looking at something in the universe and saying, ‘That’s different,’ and then passing it on to professional astronomers.”

Contact Information
Charles Kerton, Physics and Astronomy, 515-294-2298, kerton@iastate.edu

Charles Kerton | newswise
Further information:
http://www.iastate.edu

More articles from Physics and Astronomy:

nachricht Breaking the optical bandwidth record of stable pulsed lasers
24.01.2017 | Institut national de la recherche scientifique - INRS

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>