Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spanish scientists participate in development of a new model to explain movements of the moon

18.12.2008
Two researchers from the universities of Valladolid and Alicante are developing a mathematical formula to study the rotation of the moon, taking into account its structure, which comprises a solid external layer and a fluid internal core.

Their work is part of an international study, which has come up with an improved theoretical model about the orbital and rotational dynamics of the Earth and its satellite, and which the scientific community will be able to use to obtain more precise measurements in order to aid future NASA missions to the moon.

Juan J. A. Getino, from the Applied Mathematics Department of the University of Valladolid, and Alberto Escapa, from the Applied Mathematics Department of the Higher Polytechnic School of the University of Alicante, suggest in their work that the Earth and the moon should be considered as “multi-layered” systems. In order to analyse their movements, the researchers have used Hamiltonian mechanics, a kind of classical mechanics used, among other things, to study the movements of heavenly bodies in response to gravitational effects.

“The Earth can be viewed as a three-layered system, with a solid exterior mantle, a fluid intermediary layer and a solid interior nucleus,” Getino tells SINC. The researcher points out that the new proposition applies multi-layer theories to the study of the rotation and movements of the moon, as well as its interaction with the Earth.

“The end objective of this multidisciplinary study is to develop a more complete model of the movements of the moon, to make it possible to correctly interpret the increasingly precise data we have about the distance between it and the Earth,” says Alberto Escapa.

Although based in classic mechanics, the contributions of the Spanish scientists to this study of the rotational and orbital dynamics of the moon are part of a more ambitious project based on Einstein’s general theory of relativity. In fact, the study, published recently in the journal Advances in Space Research, is being led by the relativist astronomer Sergei M. Kopeikin, from the University of Missouri, United States, and also involves the participation of other researchers from the United States, Germany, Russia and China.

Escapa points out that their proposition involves “extrapolating to the moon a mathematical model that we had previously developed in order to explain the small changes within the Earth’s rotational axis”. This model helped to improve GPS navigation systems, and in 2003 led to Getino and Escapa, along with other scientists, being awarded the European Union’s Descartes Prize for Research.

Using a laser to measure the distance between the Earth and the moon

Today, the latest improvements in laser measuring system technology (Lunar Laser Ranging) enable precise measurement of the distance between the Earth and its satellite down to almost a millimetre. Work in this area started with the Apollo era programmes more than 35 years ago, when the first corner-cube reflectors (CCR) started to be installed on the lunar surface. These devices reflect rays of light emitted by various terrestrial stations, making it possible to measure the distance between the Earth and the moon.

The measurements provided by LLR are “crucial”, according to the study, both in terms of moving forward in understanding the fundamental laws of gravitational physics, but also in improving understanding of the moon’s internal structure, as well as to help in the planning of future robotic and manned missions to the moon. The relativist theoretical model, complemented by the work of the Spanish scientists, could help to bring about progress in these fields.

NASA is weighing up the possibility of incorporating the results of this modelling into its GEODYN programme, a piece of software developed in order to analyse the orbits of satellites and estimate geodesic parameters to help improve space ship navigation, and to be able to land precisely on any part of the moon.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>