Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spanish scientists participate in development of a new model to explain movements of the moon

18.12.2008
Two researchers from the universities of Valladolid and Alicante are developing a mathematical formula to study the rotation of the moon, taking into account its structure, which comprises a solid external layer and a fluid internal core.

Their work is part of an international study, which has come up with an improved theoretical model about the orbital and rotational dynamics of the Earth and its satellite, and which the scientific community will be able to use to obtain more precise measurements in order to aid future NASA missions to the moon.

Juan J. A. Getino, from the Applied Mathematics Department of the University of Valladolid, and Alberto Escapa, from the Applied Mathematics Department of the Higher Polytechnic School of the University of Alicante, suggest in their work that the Earth and the moon should be considered as “multi-layered” systems. In order to analyse their movements, the researchers have used Hamiltonian mechanics, a kind of classical mechanics used, among other things, to study the movements of heavenly bodies in response to gravitational effects.

“The Earth can be viewed as a three-layered system, with a solid exterior mantle, a fluid intermediary layer and a solid interior nucleus,” Getino tells SINC. The researcher points out that the new proposition applies multi-layer theories to the study of the rotation and movements of the moon, as well as its interaction with the Earth.

“The end objective of this multidisciplinary study is to develop a more complete model of the movements of the moon, to make it possible to correctly interpret the increasingly precise data we have about the distance between it and the Earth,” says Alberto Escapa.

Although based in classic mechanics, the contributions of the Spanish scientists to this study of the rotational and orbital dynamics of the moon are part of a more ambitious project based on Einstein’s general theory of relativity. In fact, the study, published recently in the journal Advances in Space Research, is being led by the relativist astronomer Sergei M. Kopeikin, from the University of Missouri, United States, and also involves the participation of other researchers from the United States, Germany, Russia and China.

Escapa points out that their proposition involves “extrapolating to the moon a mathematical model that we had previously developed in order to explain the small changes within the Earth’s rotational axis”. This model helped to improve GPS navigation systems, and in 2003 led to Getino and Escapa, along with other scientists, being awarded the European Union’s Descartes Prize for Research.

Using a laser to measure the distance between the Earth and the moon

Today, the latest improvements in laser measuring system technology (Lunar Laser Ranging) enable precise measurement of the distance between the Earth and its satellite down to almost a millimetre. Work in this area started with the Apollo era programmes more than 35 years ago, when the first corner-cube reflectors (CCR) started to be installed on the lunar surface. These devices reflect rays of light emitted by various terrestrial stations, making it possible to measure the distance between the Earth and the moon.

The measurements provided by LLR are “crucial”, according to the study, both in terms of moving forward in understanding the fundamental laws of gravitational physics, but also in improving understanding of the moon’s internal structure, as well as to help in the planning of future robotic and manned missions to the moon. The relativist theoretical model, complemented by the work of the Spanish scientists, could help to bring about progress in these fields.

NASA is weighing up the possibility of incorporating the results of this modelling into its GEODYN programme, a piece of software developed in order to analyse the orbits of satellites and estimate geodesic parameters to help improve space ship navigation, and to be able to land precisely on any part of the moon.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>