Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulations help explain fast water transport in nanotubes

18.09.2008
By discovering the physical mechanism behind the rapid transport of water in carbon nanotubes, scientists at the University of Illinois have moved a step closer to ultra-efficient, next-generation nanofluidic devices for drug delivery, water purification and nano-manufacturing.

"Extraordinarily fast transport of water in carbon nanotubes has generally been attributed to the smoothness of the nanotube walls and their hydrophobic, or water-hating surfaces," said Narayana R. Aluru, a Willett Faculty Scholar and a professor of mechanical science and engineering at the U. of I.

"We can now show that the fast transport can be enhanced by orienting water molecules in a nanotube," Aluru said. "Orientation can give rise to a coupling between the water molecules' rotational and translational motions, resulting in a helical, screw-type motion through the nanotube," Aluru said.

Using molecular dynamics simulations, Aluru and graduate student Sony Joseph examined the physical mechanism behind orientation-driven rapid transport. For the simulations, the system consisted of water molecules in a 9.83 nanometer long nanotube, connected to a bath at each end. Nanotubes of two diameters (0.78 nanometers and 1.25 nanometers) were used. Aluru and Joseph reported their findings in the journal Physical Review Letters.

For very small nanotubes, water molecules fill the nanotube in single-file fashion, and orient in one direction as a result of confinement effects. This orientation produces water transport in one direction. However, the water molecules can flip their orientations collectively at intervals, reversing the flow and resulting in no net transport.

In bigger nanotubes, water molecules are not oriented in any particular direction, again resulting in no transport.

Water is a polar molecule consisting of two hydrogen atoms and one oxygen atom. Although its net charge is zero, the molecule has a positive side (hydrogen) and a negative side (oxygen). This polarity causes the molecule to orient in a particular direction when in the presence of an electric field.

Creating and maintaining that orientation, either by directly applying an electric field or by attaching chemical functional groups at the ends of the nanotubes, produces rapid transport, the researchers report.

"The molecular mechanism governing the relationship between orientation and flow had not been known," Aluru said. "The coupling occurs between the rotation of one molecule and the translation of its neighboring molecules. This coupling moves water through the nanotube in a helical, screw-like fashion."

In addition to explaining recent experimental results obtained by other groups, the researchers' findings also describe a physical mechanism that could be used to pump water through nanotube membranes in next-generation nanofluidic devices.

James E. Kloeppel | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>