Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shaken, not stirred: Control Over Complex Systems Consisting of Many Quantum Particles

05.06.2014

At TU Vienna, a new method was developed to utilize quantum mechanical vibrations for high precision measurements. The well-known concept of the Ramsey interferometer is applied to a complex multi particle system consisting of hundreds of atoms.

Sometimes quantum particles behave like waves. This phenomenon is often used for high precision measurements, for instance in atomic clocks. Usually, only the wave properties of single particles play a role, but now researchers at the Vienna Center for Quantum Science and Technology, Vienna University of Technology have succeeded in quantum mechanically controlling hundreds of Rubidium atoms of an ultracold Bose-Einstein-condensate by shaking it in just the right way. Now, not only internal states of atoms can be used for interferometric measurements, but also the collective motional state of all particles.


Shaken: The time evolution of the vibration of the condensate

Superpositions of Different States
According to quantum theory, some physical quantities can only have certain discrete values. If, for instance, the energy of an electron inside an atom is measured, it is always found in special energy states – other energy values are just not allowed. It is similar with the motion of particles, if they are confined to small spaces.

“We catch hundreds of Rubidium atoms in a magnetic trap and cool them so that they form an ultracold Bose-Einstein condensate”, says Professor Jörg Schmiedmayer from the Institute for Atomic and Subatomic Physics at the Vienna University of Technology. “This Bose-Einstein-condensate moves as a gigantic matter wave.” The laws of quantum physics, however, do not permit every kind of motion, but only a certain set of possible motion waves.

Different Wave States
“It is a bit like blowing a flute”, says Sandrine van Frank. “When you blow it, a sound wave is created. If you blow it harder, you can produce a high-pitched overtone.” In quantum physics, however, different states can be excited at the same time. With a precisely tailored electromagnetic pulse, developed in collaboration with Prof. Tommaso Calarco of the Institute for Quantum Information at the Univ. Ulm, the Bose-Einstein condensate can be shaken, so that it does not only occupy one of the possible motion states, but two at the same time.

Such a superposition of states is something quite normal in quantum physics. The amazing thing is that a system with hundreds of atoms and many degrees of freedom – in quantum terms something incredibly huge – can be prepared in such a superposition state. Usually, quantum superpositions are extremely fragile. The larger the object, the easier it is to destroy the quantum properties of a superposition of allowed quantum states – a phenomenon called “decoherence”. Today, decoherence is considered to be the hardest problem for the development of new quantum technologies such as the Quantum Computer.

“After we have shaken the condensate with the pulse, it performs(exhibits) two different vibrational motions at the same time”, says van Frank. “After a while, we shake the condensate a second time, recombining the two superimposed motions.” Which of the two possible kinds of motion prevails in the end depends on the time delay between the two pulses and on the quantum phase of the superposition. Such a sequence of pulses is known as “Ramsey sequence” and is used for high-precision measurements in many areas. Now this technique was successfully transferred to the many-particle states of a Bose-Einstein condensate.

Just the Right Kick
In order to control the system, it was crucial to find exactly the right kind of pulse with which the condensate has to be shaken. It is supposed to enable a transition between the two vibration states that should be superimposed, but it should not be able to create any other possible states. Excluding all the other states turned out to be crucial for suppressing the unwanted decoherence effect.

“Our result proves that vibrational states of hundreds of atoms can be used for quantum experiments”, says Schmiedmayer. These states can be used to store information, and one day maybe even to do calculations. The remarkable stability of these states also gives insight into decoherence phenomena of large systems, consisting of many particles – an extremely fruitful field of research. In a next step, not only vibrations but also rotation states of the Bose-Einstein condensate will be studied. In the quantum world, both  are possible at the same time: shaken AND stirred.

The work has now been published in the journal “Nature Communications”. The team at the Vienna University of Technology was supported by researchers from Hamburg University and Ulm University.
Nature Communications 5,  4009
doi:10.1038/ncomms5009


Additional Information:
Prof. Jörg Schmiedmayer
Institute of Atomic and Subatomic Phyisics,
Vienna Center for Quantum Science and Technology (VCQ)
Vienna University of Technology
Stadionallee 2, 1020 Wien
+43 (1) 58801 141888
schmiedmayer@AtomChip.org

Prof. Thorsten Schumm
Institute of Atomic and Subatomic Phyisics,
Vienna Center for Quantum Science and Technology (VCQ)
Vienna University of Technology
Stadionallee 2, 1020 Wien
T: +43-1-58801-141896
thorsten.schumm@tuwien.ac.at

Sandrine van Frank, MSc
Institute of Atomic and Subatomic Phyisics,
Vienna Center for Quantum Science and Technology (VCQ)
Vienna University of Technology
Stadionallee 2, 1020 Wien
T: +43-1-58801-141889
sandrine.frank@tuwien.ac.at

florian.aigner@tuwien.ac.at

Florian Aigner | Eurek Alert!
Further information:
http://www.tuwien.ac.at/en/news/news_detail/article/8820/

Further reports about: Atomic Bose-Einstein Quantum Rubidium Subatomic Technology energy

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>