Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smooth surfaces are tacky at small scales

15.03.2002


Spot-welds stick sliding metals


Metals stick as they slip if pressed together and pushed.
© GettyImages



Two smooth, cold, metal surfaces are like pieces of tacky Sellotape. They form tiny spot welds that have to be broken apart before they can slide over each other. This, claim two physicists in California1, is another reason why metals stick as they slip if they are pressed together and pushed.

Such microscopic causes of friction and wear are increasingly important as the scale of mechanical engineering shrinks to below what’s visible. Here, conventional methods of lubrication start to fail.


Stick–slip motion is common between surfaces that are not lubricated. It causes chalk to screech on a blackboard, makes a violin string vibrate when a bow passes across it, and can wear out watch mechanisms and cutting tools.

Roughness is thought to be behind most stick–slip. Even an apparently smooth sheet of metal or glass is usually covered with tiny ridges, pits and scratches. These can interlock like teeth until the driving force becomes great enough to break the irregularities or push them over one another. Then the surface lurches forward until the protrusions enmesh further along.

This is not the whole story, say Raffi Budakian and Seth Putterman of the University of California at Los Angeles. They found that tiny strings formed and broke between two tiny gold balls as they rubbed together.

Ball game

Budakian and Putterman glued one ball, a fifth of a millimetre across, to the tip of an optical fibre. The other, two-millimetre ball they attached to a platform that they could move precisely.

When the small ball moved, the optical-fibre beam moved with it. Thus, the researchers could accurately measure the ball’s displacement, and the forces acting on it. From changes in an electrical current flowing between the balls, they also deduced the size of the area of contact between them.

First, the duo measured how hard it was to pull the balls apart vertically. They found that this rupture stress increased as the area of contact got bigger.

They concluded that the metal balls are tacky at nanometre scales: held together for several seconds, narrow bridges of gold form between the two surfaces, which stretch and break as the balls are separated. The force needed to break these necks of gold depends on how thick they are.

Then the researchers looked at horizontal sliding motions. They found that the force needed to initiate a slip was the same as the force needed to rupture a gold neck as the balls were pulled apart vertically. In other words, it seems that tiny strings of gold are created, stretched and snapped as the metal surfaces move over one another.

References

  1. Budakian, R. & Putterman, S.J. Time scales for cold-welding and the origins of stick–slip behaviour. Preprint, (2001).


PHILIP BALL | Nature Science News

More articles from Physics and Astronomy:

nachricht Transportable laser
23.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht New for three types of extreme-energy space particles: Theory shows unified origin
23.01.2018 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>