Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smooth surfaces are tacky at small scales

15.03.2002


Spot-welds stick sliding metals


Metals stick as they slip if pressed together and pushed.
© GettyImages



Two smooth, cold, metal surfaces are like pieces of tacky Sellotape. They form tiny spot welds that have to be broken apart before they can slide over each other. This, claim two physicists in California1, is another reason why metals stick as they slip if they are pressed together and pushed.

Such microscopic causes of friction and wear are increasingly important as the scale of mechanical engineering shrinks to below what’s visible. Here, conventional methods of lubrication start to fail.


Stick–slip motion is common between surfaces that are not lubricated. It causes chalk to screech on a blackboard, makes a violin string vibrate when a bow passes across it, and can wear out watch mechanisms and cutting tools.

Roughness is thought to be behind most stick–slip. Even an apparently smooth sheet of metal or glass is usually covered with tiny ridges, pits and scratches. These can interlock like teeth until the driving force becomes great enough to break the irregularities or push them over one another. Then the surface lurches forward until the protrusions enmesh further along.

This is not the whole story, say Raffi Budakian and Seth Putterman of the University of California at Los Angeles. They found that tiny strings formed and broke between two tiny gold balls as they rubbed together.

Ball game

Budakian and Putterman glued one ball, a fifth of a millimetre across, to the tip of an optical fibre. The other, two-millimetre ball they attached to a platform that they could move precisely.

When the small ball moved, the optical-fibre beam moved with it. Thus, the researchers could accurately measure the ball’s displacement, and the forces acting on it. From changes in an electrical current flowing between the balls, they also deduced the size of the area of contact between them.

First, the duo measured how hard it was to pull the balls apart vertically. They found that this rupture stress increased as the area of contact got bigger.

They concluded that the metal balls are tacky at nanometre scales: held together for several seconds, narrow bridges of gold form between the two surfaces, which stretch and break as the balls are separated. The force needed to break these necks of gold depends on how thick they are.

Then the researchers looked at horizontal sliding motions. They found that the force needed to initiate a slip was the same as the force needed to rupture a gold neck as the balls were pulled apart vertically. In other words, it seems that tiny strings of gold are created, stretched and snapped as the metal surfaces move over one another.

References

  1. Budakian, R. & Putterman, S.J. Time scales for cold-welding and the origins of stick–slip behaviour. Preprint, (2001).


PHILIP BALL | Nature Science News

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>