Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Walking tall: UH student working on space suit redesign for NASA

14.02.2007
Graduate Student’s Research Focuses on Stability and Locomotion

Space suits for astronauts may get a new and better design following a University of Houston doctoral student’s locomotion stability research. Melissa Scott-Pandorf is a Fellow of the Texas Space Grant Consortium.

“NASA’s mission to send humans back to the Moon is closer to a reality every day,” Scott-Pandorf, a doctoral student in the UH Department of Health and Human Performance, said. “Astronauts will need to travel easily over the planet’s terrain, meaning their mobility will be important for overall mission success.”

To begin her study, Scott-Pandorf looked at hours and hours of lunar moon-walk video to determine how fast and how far astronauts traveled wearing all of the needed equipment. That information, combined with metabolic indicators collected while the astronauts worked on the lunar surface, was used to calculate the amount of energy expelled while walking on the moon. Scott-Pandorf said this is valuable information that will help NASA officials decide how much is too much to include on an astronaut’s space suit.

“I can’t tell you how many times I watched the astronauts fall down on the lunar videos,” she joked. “Obviously, it isn’t meant to be funny. But it’s difficult for them to get up with the survival pack on their back and those bulky suits. We’re hoping our new research projects will lead to a streamlined space suit that makes it easy to navigate the terrain.”

As part of her new work, Scott-Pandorf uses a weight suspension system in the UH Laboratory of Integrated Physiology (LIP). The apparatus is used as a reduced gravity simulator that helps to evaluate locomotion stability. A subject is buckled into the suspension system and simply walks as Scott-Pandorf records data about the person’s gait. With this system, she can investigate how mass distribution and pressure levels of the space suit may influence the ease in which astronauts travel a planet’s terrain.

“For one thing, it’s clear that the placement of the life support pack is too high on the astronaut,” Scott-Pandorf said. “Possible redesign ideas are to alter the pack to fit the front and back of the space suit evenly or create a pack that attaches closer to the waist, which would lower the astronaut’s center of gravity. It’s the same idea as if you were balancing on a surf board bending your knees and staying low. This lowers your center of mass and allows you more stability.”

Scott-Pandorf is also considering research to investigate the mobility needed at the joints of the space suit that would allow an astronaut to move more naturally, making it easier to recover from a fall or to keep from falling at all.

“In addition, the space suspension system we are using is similar to what has been used as therapy tools for persons with spinal cord injuries or the elderly. Conceivably using the system for our research could usher in new ideas for new therapies for those populations,” Scott-Pandorf said.

The Texas Space Grant Consortium was founded in 1989 and is comprised of 34 universities, industrial organizations, non-profit organizations and government agencies within the state. The consortium supports educational and research projects that further NASA’s mission: to protect and understand our planet, improve life on Earth, extend life beyond our planet and explore the universe. Scott-Pandorf will work with NASA and UH for the extent of her fellowship.

Scott-Pandorf’s research on locomotion has included assisting UH Professor Max Kurz in his study of stability and locomotion. In that study, he recorded the waddling of penguins to determine how the manner of movement assisted in crossing rugged terrain. For more information on this study, please visit www.uh.edu/admin/media/nr/2006/01jan/011206kurtzpenguins.html and www.uh.edu/admin/media/nr/2005/12dec/121205penguinvideo.html.

About the University of Houston

The University of Houston, Texas’ premier metropolitan research and teaching institution, is home to more than 40 research centers and institutes and sponsors more than 300 partnerships with corporate, civic and governmental entities. UH, the most diverse research university in the country, stands at the forefront of education, research and service with more than 35,000 students.

Marisa Ramirez | EurekAlert!
Further information:
http://www.uh.edu/admin/media/newsroom
http://www.tsgc.utexas.edu/./index.html
http://www.hhp.uh.edu

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>