Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New material means ‘x-ray specs’ no longer required

20.02.2006


A new optical effect has been created in a London laboratory that means solid objects such as walls could one day be rendered transparent, scientists report today in the journal Nature Materials.



Researchers from Imperial College London and the University of Neuchatel, Switzerland, have pioneered the technique which could be used to see through rubble at earthquake sites, or look at parts of the body obscured by bone.

The effect is based on the development of a new material that exploits the way atoms in matter move, to make them interact with a laser beam in an entirely new way.


The work is based on a breakthrough which contradicts Einstein’s theory that in order for a laser to work, the light-amplifying material it contains, usually a crystal or glass, must be brought to a state known as ‘population inversion’. This refers to the condition of the atoms within the material, which must be excited with enough energy to make them emit rather than absorb light.

Quantum physicists, however, have long predicted that by interfering with the wave-patterns of atoms, light could be amplified without population inversion. This has previously been demonstrated in the atoms of gases but has not before been shown in solids.

In order to make this breakthrough, the team created specially patterned crystals only a few billionths of a metre in length that behaved like ‘artificial atoms’. When light was shone into the crystals, it became entangled with the crystals at a molecular level rather than being absorbed, causing the material to become transparent.

This new transparent material created by the entanglement is made up of molecules that are half matter and half light. This allows light to be amplified without population inversion for the first time in a solid. Professor Chris Phillips, of Imperial College London, says:

“This real life ‘x-ray specs’ effect relies on a property of matter that is usually ignored – that the electrons it contains move in a wave-like way. What we have learnt is how to control these waves directly. The results can be pretty weird at times, but it’s very exciting and so fundamental. At the moment the effect can only be produced in a lab under specific conditions but it has the potential to lead to all sorts of new applications.”

The team also discovered that as light passes through this new material, it slows right down and could potentially be completely stopped and stored. Professor Phillips believes this has important implications for entirely secure information networks. He says:

“When we send information, for example by sending light pulses down optical fibres, it can only be accessed by making a form of measurement, and these measurements always disturb the information. This technology offers us a means of sending light signals through a network without us having to disturb them ourselves. Now, if confidential information is being spied on, the disturbance shows up straight away and we can nab the eavesdropper with 100% certainty.”

Abigail Smith | alfa
Further information:
http://www.imperial.ac.uk

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>