Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New material means ‘x-ray specs’ no longer required

20.02.2006


A new optical effect has been created in a London laboratory that means solid objects such as walls could one day be rendered transparent, scientists report today in the journal Nature Materials.



Researchers from Imperial College London and the University of Neuchatel, Switzerland, have pioneered the technique which could be used to see through rubble at earthquake sites, or look at parts of the body obscured by bone.

The effect is based on the development of a new material that exploits the way atoms in matter move, to make them interact with a laser beam in an entirely new way.


The work is based on a breakthrough which contradicts Einstein’s theory that in order for a laser to work, the light-amplifying material it contains, usually a crystal or glass, must be brought to a state known as ‘population inversion’. This refers to the condition of the atoms within the material, which must be excited with enough energy to make them emit rather than absorb light.

Quantum physicists, however, have long predicted that by interfering with the wave-patterns of atoms, light could be amplified without population inversion. This has previously been demonstrated in the atoms of gases but has not before been shown in solids.

In order to make this breakthrough, the team created specially patterned crystals only a few billionths of a metre in length that behaved like ‘artificial atoms’. When light was shone into the crystals, it became entangled with the crystals at a molecular level rather than being absorbed, causing the material to become transparent.

This new transparent material created by the entanglement is made up of molecules that are half matter and half light. This allows light to be amplified without population inversion for the first time in a solid. Professor Chris Phillips, of Imperial College London, says:

“This real life ‘x-ray specs’ effect relies on a property of matter that is usually ignored – that the electrons it contains move in a wave-like way. What we have learnt is how to control these waves directly. The results can be pretty weird at times, but it’s very exciting and so fundamental. At the moment the effect can only be produced in a lab under specific conditions but it has the potential to lead to all sorts of new applications.”

The team also discovered that as light passes through this new material, it slows right down and could potentially be completely stopped and stored. Professor Phillips believes this has important implications for entirely secure information networks. He says:

“When we send information, for example by sending light pulses down optical fibres, it can only be accessed by making a form of measurement, and these measurements always disturb the information. This technology offers us a means of sending light signals through a network without us having to disturb them ourselves. Now, if confidential information is being spied on, the disturbance shows up straight away and we can nab the eavesdropper with 100% certainty.”

Abigail Smith | alfa
Further information:
http://www.imperial.ac.uk

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>