Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New material means ‘x-ray specs’ no longer required

20.02.2006


A new optical effect has been created in a London laboratory that means solid objects such as walls could one day be rendered transparent, scientists report today in the journal Nature Materials.



Researchers from Imperial College London and the University of Neuchatel, Switzerland, have pioneered the technique which could be used to see through rubble at earthquake sites, or look at parts of the body obscured by bone.

The effect is based on the development of a new material that exploits the way atoms in matter move, to make them interact with a laser beam in an entirely new way.


The work is based on a breakthrough which contradicts Einstein’s theory that in order for a laser to work, the light-amplifying material it contains, usually a crystal or glass, must be brought to a state known as ‘population inversion’. This refers to the condition of the atoms within the material, which must be excited with enough energy to make them emit rather than absorb light.

Quantum physicists, however, have long predicted that by interfering with the wave-patterns of atoms, light could be amplified without population inversion. This has previously been demonstrated in the atoms of gases but has not before been shown in solids.

In order to make this breakthrough, the team created specially patterned crystals only a few billionths of a metre in length that behaved like ‘artificial atoms’. When light was shone into the crystals, it became entangled with the crystals at a molecular level rather than being absorbed, causing the material to become transparent.

This new transparent material created by the entanglement is made up of molecules that are half matter and half light. This allows light to be amplified without population inversion for the first time in a solid. Professor Chris Phillips, of Imperial College London, says:

“This real life ‘x-ray specs’ effect relies on a property of matter that is usually ignored – that the electrons it contains move in a wave-like way. What we have learnt is how to control these waves directly. The results can be pretty weird at times, but it’s very exciting and so fundamental. At the moment the effect can only be produced in a lab under specific conditions but it has the potential to lead to all sorts of new applications.”

The team also discovered that as light passes through this new material, it slows right down and could potentially be completely stopped and stored. Professor Phillips believes this has important implications for entirely secure information networks. He says:

“When we send information, for example by sending light pulses down optical fibres, it can only be accessed by making a form of measurement, and these measurements always disturb the information. This technology offers us a means of sending light signals through a network without us having to disturb them ourselves. Now, if confidential information is being spied on, the disturbance shows up straight away and we can nab the eavesdropper with 100% certainty.”

Abigail Smith | alfa
Further information:
http://www.imperial.ac.uk

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>