Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoscientists Provide New Picture of Semiconductor Material

05.10.2005


For almost a decade, scientists thought they understood the surface structure of cubic gallium nitride, a promising new crystalline semiconductor. Research by an interdisciplinary team of nanoscientists from Ohio University and the Universitat Autònoma de Barcelona, however, turns that idea on its head.



Their study published in the Sept. 30 online issue of the journal Physical Review Letters provides a fresh – and they argue, more accurate – look at the surface structure of the crystalline material, which could be used in lasers and other electronic devices.

Nancy Sandler, an assistant professor of physics and astronomy at Ohio University, and Pablo Ordejón, a Barcelona professor specializing in the algorithm used in the project, calculated several properties using the currently accepted model and obtained new images of the crystal’s surface. Experimentalists Hamad Al-Brithen and his Ph.D. adviser Arthur Smith, Ohio University associate professor of physics and astronomy, recently had used scanning tunneling microscopy to capture an image of the surface.


When they compared the model image with the experimental image, the researchers found that the theory and the experiment aligned – except for one important detail. Researchers previously thought that the atoms on the surface were arranged in groups of four in one direction but only one in the other. The new finding shows that they are in groups of four in one direction but in groups of three in the other direction, Smith said. The discrepancy calls into question the model scientists have accepted for the last seven years and the understanding of the surface structure.

The surface of the material is not easy to work with, Smith noted, because it’s sensitive to how scientists handle it. A different structure could be created simply by exposing the crystalline surface to other elements. For example, the accidental contact of arsenic (an element commonly used in semiconductor growth) with the crystal surface has affected other researchers’ data in the past.

“The relevance of modeling surfaces is that the ordering of atoms on a surface can be substantially different from the one in the bulk of the material,” Sandler said.

The new research could help scientists learn how to use cubic gallium nitride as a new semiconductor for lasers and other electronic devices such as display technologies and bright blue light-emitting diode (LED) applications. It also may help them grow layers of the material more precisely to create technological applications. But before scientists can make use of this potentially valuable material, they first must understand its basic properties so they can begin tackling its drawbacks, said Smith, director of Ohio University’s Nanoscale and Quantum Phenomena Institute.

“Cubic gallium nitride is more difficult to grow [than the popular hexagonal type of gallium nitride crystal],” said Smith. “But its cubic properties make it more compatible with other commonly used materials, and so it has more potential for integration into mainstream devices.”

The research was supported by grants from the National Science Foundation and Spain’s Ministry of Science and Technology and its Ministry of Education and Science.

This project is the first major paper published by Ohio University’s Nanoscale Interdisciplinary Research Team, a collaboration of researchers funded by the NSF.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>