Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoscientists Provide New Picture of Semiconductor Material

05.10.2005


For almost a decade, scientists thought they understood the surface structure of cubic gallium nitride, a promising new crystalline semiconductor. Research by an interdisciplinary team of nanoscientists from Ohio University and the Universitat Autònoma de Barcelona, however, turns that idea on its head.



Their study published in the Sept. 30 online issue of the journal Physical Review Letters provides a fresh – and they argue, more accurate – look at the surface structure of the crystalline material, which could be used in lasers and other electronic devices.

Nancy Sandler, an assistant professor of physics and astronomy at Ohio University, and Pablo Ordejón, a Barcelona professor specializing in the algorithm used in the project, calculated several properties using the currently accepted model and obtained new images of the crystal’s surface. Experimentalists Hamad Al-Brithen and his Ph.D. adviser Arthur Smith, Ohio University associate professor of physics and astronomy, recently had used scanning tunneling microscopy to capture an image of the surface.


When they compared the model image with the experimental image, the researchers found that the theory and the experiment aligned – except for one important detail. Researchers previously thought that the atoms on the surface were arranged in groups of four in one direction but only one in the other. The new finding shows that they are in groups of four in one direction but in groups of three in the other direction, Smith said. The discrepancy calls into question the model scientists have accepted for the last seven years and the understanding of the surface structure.

The surface of the material is not easy to work with, Smith noted, because it’s sensitive to how scientists handle it. A different structure could be created simply by exposing the crystalline surface to other elements. For example, the accidental contact of arsenic (an element commonly used in semiconductor growth) with the crystal surface has affected other researchers’ data in the past.

“The relevance of modeling surfaces is that the ordering of atoms on a surface can be substantially different from the one in the bulk of the material,” Sandler said.

The new research could help scientists learn how to use cubic gallium nitride as a new semiconductor for lasers and other electronic devices such as display technologies and bright blue light-emitting diode (LED) applications. It also may help them grow layers of the material more precisely to create technological applications. But before scientists can make use of this potentially valuable material, they first must understand its basic properties so they can begin tackling its drawbacks, said Smith, director of Ohio University’s Nanoscale and Quantum Phenomena Institute.

“Cubic gallium nitride is more difficult to grow [than the popular hexagonal type of gallium nitride crystal],” said Smith. “But its cubic properties make it more compatible with other commonly used materials, and so it has more potential for integration into mainstream devices.”

The research was supported by grants from the National Science Foundation and Spain’s Ministry of Science and Technology and its Ministry of Education and Science.

This project is the first major paper published by Ohio University’s Nanoscale Interdisciplinary Research Team, a collaboration of researchers funded by the NSF.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>